学年

教科

質問の種類

物理 高校生

物理力学の質問です。 問2の式の右辺の成り立ちの意味がわからないため教えてください。

(14. センター追試 [物理Ⅰ] 改) ☆☆☆ 思考 判断 表現 13 摩擦のある水平面上の運動 5分 図のように、粗い水平な床 m F の上の点0に、質量mの小物体が静止している。この小物体に、 床と角度をなす矢印の向きに一定の大きさFの力を加えて、点 0から距離にある点Pまで床に沿って移動させた。小物体が点 Pに達した直後に力を加えることをやめたところ、 小物体はだけすべって、 点Qで静止した。ただ し、小物体と床の間の動摩擦係数をμ'′ 重力加速度の大きさをgとする。 問1点0から点Pまで動く間に、 小物体が床から受ける動摩擦力の大きさを表す式として正しいも のを、次の①~⑦のうちから一つ選べ。 ① μ'(mg+Fsin0) ②μmg-F'sin0) ③μ'(mg+Fcose) ④μ'(mg-Fcose) ⑤μ'(mg+F) ⑥μ'(mg-F) ⑦ μ'mg 小物体が点Pに到達したときの速さをfを用いて表す式として正しいものを、次の①~⑥のうち から一つ選べ。 「21(F+f) 21 (Fsin0+f) 21(Fcose+f) ① (2) ③ m m m 21(F-f) 21(Fsine-f) 21(Fcose-f) ④ ⑤ ⑥ m m m 問3 小物体が動き始めてから点Qに到達するまで、 点0と小物体との距離を時間の関数として表した グラフとして最も適当なものを、次の①~④のうちから一つ選べ。 さい a 距離 ① 距離 ② 距離 距離 ④ 1+1'1 1+1'1 1+1'1 1+1' 301 1 I 時間 時間 時間 時間 ( 13. センター本試 [物理Ⅰ] 改)

未解決 回答数: 1
物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0
物理 高校生

このページの全問の解説が欲しいです🙏

<大問3> x軸上を等加速度運動する物体について考える。 速度, 加速度の向きはx軸の正の向きを 正の向きとして、以下の間に答えよ。 (E) この物体が時刻t=0 に x=0を速度 4 [m/s] で通過し, 3 [s] 後に速度が 10 [m/s] になっ た場合。 (1) 物体の加速度を求めよ。 B (2) t=3 [s] での位置を求めよ。 (3)この物体がx=12 [m] を通過するときの速度を求めよ。 次に,この物体が t=0にx=0を速度4 [m/s] で通過し、4[s] 後に速度が-12 [m/s] に なった場合。 (1) [er] (4) 物体の加速度を求めよ。 (5)この物体の速度が,正から負に変わる時刻を求めよ。 (6)この物体が再び原点を通過する時刻を求めよ。 (a\m] <大問4> [e\m] 図1のように,x軸上を 運動する物体があり、時刻で の速度vが図2で表される。 時刻 t =0での物体の位置を原 点 x=0 とする。 v[m/s] 0 x(m) 図1 v[m/s] (1) 時刻t=2sにおける物体の 加速度αは (ア) m/s" であ り 時刻 t = 6sでの加速度 α は (イ) [m/s' であり、 時刻 16 図2 8 0 7 15 t(s) t=11sでの加速度αは (ウ) m/s である。 (2) 時刻 t = 6s における物体の位置 x は (エ) mである。 (3) 物体が原点x=0から右に最も離れる時刻は (オ)であり、 そ の位置 x は (カ) である。 (4) 時刻 t = 15s以後も,そのまま運動を続けた場合, 物体が再び原点 に戻ってくる時刻は (キ) sであり、そのときの速度vは(ク) m/sである。 3 8 (5)

回答募集中 回答数: 0