学年

教科

質問の種類

物理 高校生

大問6の問4、問5の式がどうしても わかりません。 教えていただけますか。 答えも添付します。

6 図のように,鉛直方向上向きを正としてx軸をとり、原点Oには小球Aが,位置座標 x=x には小球Bがある。 時刻 t=0に小球Aを鉛直上向きに初速度v で打ち上げると 同時に,小球Bを静かに放した。 重力加速度の大きさをgとし,以下の各問に答えなさ い。 但し, 空気抵抗は無視できるものとし、速度、加速度は鉛直方向上向きを正とする。 0-16- X Vo V-V-gt O-Vogl 20 Vo =16 x+ B Vo A 【 配点: 24点】 Vist V=Votat V=Vo-ft (1) 時刻 t = 0 から小球 A, B が衝突するまでの間において, 時刻 t における以下の問 ① ~ ④ に答えなさい。 解答は X01 Vo,g, t のうち必要なものを用いて表しなさい。 ① 小球Aの速度を求めなさい。 (2) 小球Bの速度を求めなさい。 (3) 小球 A の位置座標を求めなさい。 ④ 小球Bの位置座標を求めなさい。 Vot (2) 小球Aと小球Bが衝突する時刻を求めなさい。 Y = ±gt² lo-1xgx V² t (3) 小球 A, B が衝突する位置座標xx>0であるための, A の初速度が満たすべき 条件をxo, vo,g を用いて表しなさい。 2 2 Votentio Votyge (4) 打ち上げられた小球 A の速度が0になった瞬間に,小球Bとの衝突が起きたとする。 ① 小球 A の初速度vo を Xorg を用いて表しなさい。 ② 衝突した位置の座標をx のみを用いて表しなさい。 V=Vogt- •VOXP Vox V-Vrat V-V-st = Vo-gt t O-Votat at=vo -8- Xyz M² 0-16 at Vo² 26-10-26 2V₂-

未解決 回答数: 1
物理 高校生

大問6の問4、問5の式がどうしても わかりません。 教えていただけますか。 答えも添付します。

6 図のように,鉛直方向上向きを正としてx軸をとり、原点Oには小球Aが,位置座標 x=x には小球Bがある。 時刻 t=0に小球Aを鉛直上向きに初速度v で打ち上げると 同時に,小球Bを静かに放した。 重力加速度の大きさをgとし,以下の各問に答えなさ い。 但し, 空気抵抗は無視できるものとし、速度、加速度は鉛直方向上向きを正とする。 0-16- X Vo V-V-gt O-Vogl 20 Vo =16 x+ B Vo A 【 配点: 24点】 Vist V=Votat V=Vo-ft (1) 時刻 t = 0 から小球 A, B が衝突するまでの間において, 時刻 t における以下の問 ① ~ ④ に答えなさい。 解答は X01 Vo,g, t のうち必要なものを用いて表しなさい。 ① 小球Aの速度を求めなさい。 (2) 小球Bの速度を求めなさい。 (3) 小球 A の位置座標を求めなさい。 ④ 小球Bの位置座標を求めなさい。 Vot (2) 小球Aと小球Bが衝突する時刻を求めなさい。 Y = ±gt² lo-1xgx V² t (3) 小球 A, B が衝突する位置座標xx>0であるための, A の初速度が満たすべき 条件をxo, vo,g を用いて表しなさい。 2 2 Votentio Votyge (4) 打ち上げられた小球 A の速度が0になった瞬間に,小球Bとの衝突が起きたとする。 ① 小球 A の初速度vo を Xorg を用いて表しなさい。 ② 衝突した位置の座標をx のみを用いて表しなさい。 V=Vogt- •VOXP Vox V-Vrat V-V-st = Vo-gt t O-Votat at=vo -8- Xyz M² 0-16 at Vo² 26-10-26 2V₂-

回答募集中 回答数: 0
物理 高校生

物理のエッセンスからです。 2ページ目のHighのところの「(だから右辺にマイナスがつく)」と書いてありますが、なぜマイナスがつくか分かりません。 分かる方、易しく教えて頂きたいです🙇🏻‍♀️

62 力学 [解説] 直線上の衝突では反発係数 (はね返り係数) e (0≦e≦1) の式が成り立つ。 いろ いろな書き方があり、自分なりの覚え方をしていればよい。 本書では次の形式で いこう。 衝突後の速度差=-ex (前の速度差) 注意すべきは,速度の差であって,速さの差ではないという点だ。 つまり、 正・負を考えて代入しなければならない(差をとるときの物体の順番は両辺で合わ せる)。そこで衝突後の“速度”を未知数とする。上式の左辺は素直に書けるし, 運動量保存則そのものが速さでなく,速度の式だからだ。速度はもちろん地面に 対する速度。1,2を連立させて解けば,答えの速度の符号が運動の向きを教 えてくれる。 EX1 静止している質量MのQに質量mのPが速 ひで衝突した。 その後のP, Q の速度 UP, UQ (右向きを正) を求めよ。 また, Pがはね返る条件 を求めよ。 反発係数をeとする。 P Vo m M 解 運動量保存則より mvp+Mv=mvo ① eの式より Up-VQ=-e(vo-0)2 衝突後 UP VQ ① +M×② と v を消去し (m+M)up= (m-eM)v m-eM Up = Vo m+M ①-mx② より (m+M)vg=(1+emvo ・③ ③ 図示するときは,分か りやすく正としておく (1+e)m VQ= Vo ・④ m+M Up<0だと Pがはね返るためには, up < 0 となればよい。 よってm<eM 一方, は無条件に正だから, Qは右へ動く当たり前だね。 左の方へ Vp 運動 ちょっと一言 運動量保存則を“後=前”のように書いておくと,このように辺々 で速く計算できる。 ちょっとしたテクニック。 こんな問題ではPが受けた力積がよく問われる。「力積=運動量 の変化」 より mu-mv として求めてもよいが、 作用・反作用を利 用し,Qの運動量変化 Mv0 にマイナスをつけた方が簡単だ。

解決済み 回答数: 1