学年

教科

質問の種類

物理 高校生

・(4)の二枚目の写真のオレンジの波線で引いてあるところで⊿Rがたされるのは問題文の⊿R/R=k•⊿L/Lの条件があるからですか? ・(5)で二枚目の写真の「流れる電流が抵抗値に反比例する。よって電流の大きさはR/R倍になる」のところがなぜそうなるのか分かりません。 ・(6... 続きを読む

設問(4) 図3のように、可変抵抗 Y, 抵抗値が の抵抗 Ri.抵抗値が 5 r の抵抗 R2 電 圧計 ① そして電池を用いた回路に抵抗体Xを組み込む。 抵抗体 X が変形す る前の状態 (長さL, 抵抗値R)では,可変抵抗Yの抵抗値が のとき,電圧計 ①の指示値が0であった。抵抗体Xの長さをだけ伸ばしたときは、可愛 抵抗 Yの抵抗値を ⊿r だけ増加させたときに電圧計の指示値が0になった。 抵抗体Xの伸びAL と抵抗値の増加 4R との間にはんを定数として ARov AR AL =k- の関係が成立するものとして, 4L を R. Ark, L を用いて表せ。 R L 設問(6) 図3における抵抗体 Xと可変抵抗Yを抵抗R』 と抵抗R, に取り換え,電流計 A を接続して図4の回路を組んだ。 このとき, 電流計 A の指示値は 0.15A で、電圧計の指示値は30V (点a に対する点bの電位)であった。 抵抗 R1 の抵抗値は400Ω で, 抵抗 R』 の抵抗値は2600Ω, 抵抗 R2 と抵抗 R の抵抗値 は共に1000Ωである。 電圧計 の内部抵抗を1000Ωとして,この回路の点 cd 間の電位差を求めよ。 (x) R₁ r 図3 b a R2 d 価 設問 (5) 設問 (4)において, 点cd間の電圧は変化しないものとする。 電圧計の指示値 が0になるとき, 抵抗体 Xに流れている電流の大きさは,抵抗体が変形する前 と比べて変形した後では何倍になっているか。 また, 抵抗体 X における消費電 力は,抵抗体が変形する前と比べて変形した後では何倍になっているか。 変形 する前の抵抗体 X の抵抗値を R, 変形後の抵抗値をR' とし,それぞれをRと R' を用いて表せ。 0.15 c. 2600 Ra ⑩30V 全1000 d R₁ 40% h 図 4 R₂ 1000 f

解決済み 回答数: 2
物理 高校生

(3)の三枚目の写真のR’-Rの式がよく分かりません

At t であ 物理 問題Ⅱ 図1のような長さL. 断面積 S, 抵抗値Rの抵抗体 X を考える。この抵抗体Xの左 右の端に大きさVの電圧をかけたとき、抵抗体Xの内部には一様な電場(電界) が生じ るものとする。 自由電子は電場から力を受けて一定の加速度で運動し、抵抗体X内の イオンなどと衝突し、 いったん静止する。 この衝突が一定の時間間隔で繰り返し起こ ると仮定すると、 自由電子の速さは時刻に対して図2のように変化する。 自由電子1個 の質量を電気量e (e>0) 抵抗体Xの単位体積に含まれる自由電子の個数を とする。 S 抵抗体 X 図 1 L 設問(1) 以下の文章が正しい記述になるように, (あ~か)に入る適切な数式をL.S.V. em,n, Tのうち必要なものを用いて表せ。 ( 抵抗体 Xの内部に生じる電場の強さは の大きさは (あ) なので,自由電子の加速度 であり自由電子の平均の速さは (う) 一方、この抵抗体Xの断面を時間の間に通過する自由電子の数は xv4t なので、この抵抗体 X を流れる電流の大きさは したがって, 抵抗体 X の抵抗率は (カ) となる。 である。 (え) (お) xvとなる。 この抵抗体 X に力を加えると,長さはL+4L (4L>0) になり, 断面積はS-AS (4S>0) になった。 この変形において、抵抗体 X の抵抗率は変化しないものとする。 ただし, LAL, S4Sとし, 1>|x|のとき (1+x)=1+pxの近似式を用い,また,微 小量どうしの積を無視するものとする。 設問(2) 抵抗体 X の長さがL+4L, 断面積がS-4Sのときの抵抗値R' を R, L, 4L, S, 4S を用いて表せ。 設問(3) 力が加わり変形しても抵抗体 X の体積が変化しないものとして, R'-R を R, L, 4L を用いて表せ。 速さ ・時刻 T 2T 3T 図2

解決済み 回答数: 2
物理 高校生

(3)2枚目が解説の一部で、ABCDEFの距離が、Aか F’までの直線距離と等しいということを表しています。 なぜ等しくなるのかが分かりません。 この図でBC=BC’となるにはn 1とn 2のガラスの厚さが等しくないといけないと思うのですが、問題文のどこからその情報が分かり... 続きを読む

Step 3 解答編 p.97~98 L- 170 光の屈折 右図のように, 空気中から単色 の可視光線をガラス棒に入射させることを考える。 このガラス棒は,屈折率n の円柱状ガラスが, 屈折率n の円筒状ガラスによって中心軸が一致 するように囲まれている。いま, ガラス棒の端面 n2 n n2 の中心に向けて、中心軸となす角が。 (0)の方向へ光線が入射した。 ここで、>n であり、空気の屈折率を1. 真空中の光の速さをとする。また,ガラス棒の長さはL で,端面は中心軸に対して垂直である。 (1)空気中から円柱状ガラスに入射した光線の屈折角を0とするとき, sin0 をn, o を用いて表せ。 (2)この光線が円柱状ガラスと円筒状ガラスとの境界面で全反射した。 このとき, sin Oはある値より小さくなければならない。 その値をnnを用いて表せ。 (3)この光線がガラス棒に入射してから反対の端面に到達するまでにかかる時間を求め よ。 01 を用いずに表せ。

回答募集中 回答数: 0
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

(1)の答えが何故sinでなくcosなのかが分かりません 教えてください🙇‍♀️

問題 25. 交流回路 (108) 交流の発生 CHOM 図のように, 磁束密度の大きさ B〔T〕 の一様な磁場中に,一辺の長さ (21〔m〕 の正方形コイル abcdを置いた。 このコイルは,辺bcの中点を通り辺 ab に平行な軸のまわりに回転するこ とができ,この回転軸が磁場と垂直に B b C N 物理 R f S なるように設置されている。 時刻 t = 0〔s) において,辺bcは磁場と平行で あり,cからbへの向きが磁場の向きと一致していた。 このコイルに抵抗値 R[Ω] の抵抗を接続し、 コイルを図に示した向きに一定の角速度 [rad/s〕 で 回転させた。 ただし, コイルの誘導起電力および抵抗を流れる電流は, a→b→c→d→efaの向きを正とする。 (I) 時刻において,辺ab に生じる誘導起電力はいくらか。 (2) 時刻において, コイル abcd全体に生じる誘導起電力はいくらか。 (3)時刻において, 抵抗を流れる電流はいくらか。 (4) 抵抗を流れる電流の実効値はいくらか。 (5)抵抗で消費される電力の平均値はいくらか。 <福岡大〉 解説 (1)0 <wt<〔rad〕のときに 2 ついて,コイルをad側から見て考えよう (右 図)。 辺ab は, 半径[m〕, 角速度w [rad/s〕 で回転しているので,速さはww [m/s] である。 時刻 [s] では, コイルが磁場方向からwt[rad〕 磁場に垂直な成分 lw wt wt lwcoswt a(b) N S d(c) a (b) |d(c) Iw 金 (3) だけ傾いているので,辺abの速度の磁場に垂直な成分はlwcoswt[m/s]で ある。 辺ab に生じる誘導起電力Vab 〔V〕 は, a→bの向きに生じ, 正なので, Vab=Wwcoswt・B・21=21wBcoswt[V〕 (2)(I)と同様に考えて,辺cdに生じる誘導起電力 Va〔V〕は, c→dの向きに生 じ,正なので, Ved=212wBcoswt[V] また,辺bcと辺adには誘導起電力は生じない。 したがって, コイル abcd

解決済み 回答数: 1