学年

教科

質問の種類

物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0
物理 高校生

⑶についてです。黒く書いたように6m延長させるのはなぜ間違ってるのですか?なぜ上下逆転するのですか?

170 W章 波動 基本例題44 横波の伝わり方 図は,x軸上に張られたひもの1点Oがy[m〕 単振動を始めて, 0.40s 後の波形である。 0.20 (1) 振幅, 波長, 振動数, 波の速さはそれ ぞれいくらか。 (2) 図の0,a,b,cの媒質の速度の向 きはどちらか。 速さが0の場合は 「速さ」と答えよ。 両 (3) 図の時刻から. 0.20s後の波形を図中に示せ。 指針 (1) 周期は、波が1波長の距離を 進む時間から 0.40s である。 振幅, 波長をグラ フから読み取り, 振動数, 波の速さを求める。 6 (2) 横波では, 媒質の振動方向は波の進む向き に垂直であり、媒質はy方向に振動している。 (3) 波は1周期の間に1波長の距離を進む。 解説 (1) グラフから読み取る。 振幅 : A = 0.20m, 波長 : 入=4.0m 振動数, 波の速さは, 振動数:= 1/72= 波の速さ : v=fd = 2.5×4.0=10m/s (2) aとcは振動の端なので速さが0である。 Oとbの向きは,微小時間後の波形を描いて調 べる。 0: 上,b:下,aとc: 速さ 0 ST 1 0.40 =2.5 Hz I 08.0 0 JA 20 -0.20 a y[m〕↑ 0.20 0 y[m] 0.20 C HA wazlo -0.20 基本問題 334, 335,336 Say 6 7 FAX 3 微小時間後 I 52 8 HOTO 4 5 6 7 8 x[m] 133-0.20 a (3) 周期が 0.40sなので, 0.20s 間で波は図の状 R 態から半波長分を進む。 x (m) I に ** XX I I 6 7 8 x〔m〕 0 [Point 媒質の速度の向きを調べるには, 微 小時間後の波形を描くとよい。 SHU

回答募集中 回答数: 0
物理 高校生

(3)で、 ・波面でどのように定常波ができるのか ・なぜ節線は定常波の節を通ることになるのか ・なぜABの中央が腹になるのか 詳しく説明していただきたいです。

基本例題46 波の干渉 物理 振幅が等しく, 波長 2.0cmの波が出ている。 図の実 水面上の 6.0cmはなれた2点A,Bから,同位相で 線はある瞬間の山の位置, 破線は谷の位置を表してい る。 波の振幅は減衰しないものとする。 イ 2つの波が弱めあう点を連ねた線 (節線)をすべ て図中に描け。 また, 節線は全部で何本あるか。 指針 (1) 弱めあう場所は, 実線(山) と 破線(谷)が重なる点であり, 節線はそれらを連 ねたものとなる。 (2) APとBP の距離の差が, 半波長の偶数倍で あれば強めあい, 奇数倍であれば弱めあう。 (3) 線分AB上では、互いに逆向きに進む波が 重なりあい, 定常波ができ ている。 解説 (1) 節線は, (2) 点Pはどのような振動状態にあるか。 AP=8.0 cm, BP=5.0cm とする。 節線が線分 AB と交わる点は, Aから測ってそれぞれ何cmのところか。 山と谷が重な る点を連ねた 線であり,図 P. 1 14.波の性質 171 基本問題 348, 349 のようになる。節線の数は6本である。 (2) AP-BP=3.0cmであり, 半波長1.0cm の 3倍(奇数倍)である。 したがって, P あうため、振動しない。 (3) 線分AB上には定常波ができており, 節線 は AB上の定常波の節を通る。 ABの中央の点 は腹であり,腹と節の間隔は波長の1/4 (0.5 cm), 節と節の間隔は半波長 (1.0cm) である。 これから 求める場所は, Aから 0.5, 1.5, 2.5, 3.5, 4.5, 5.5cmのところとなる。 基本例題47 波の屈折 物理 図のように,波が媒質I から媒質ⅡI へ進む。媒質 Ⅰ, ⅡI の中を伝わる波の速さは、それぞれ2v, vである。 面AB Q Point A. Bは同位相で振動しているので, A,Bを結ぶ線分の中点は,定常波の腹になる。 ?? I 基本問題 351 B C

回答募集中 回答数: 0