学年

教科

質問の種類

物理 高校生

破片aの水平方向の速さは分裂前の物体の水平方向の速さに等しいのですか。

AB 1:2 (S) 185. 空中での分裂 質量mの物体が, 水平から 45° の向きに速 2cで打ち上げられ, 最高点に達したとき, 質量が12の2 つの破片に分裂し, それぞれ水平に飛び出した。 質量の小さい破 片Aが出発点に落下したとすると, 大きい方の破片 Bは, 出発点からどれだけはなれた 位置に落下するか。 ただし, 重力加速度の大きさをg とする。 例題23 ヒント破片Aの水平方向の速さは、分裂前の物体の水平方向の速さに等しい。 185. 空中での分裂 解答 3v2 g 指針 水平方向では, 物体は内力のみをおよぼしあうので, 分裂前後 での水平方向の運動量の和は保存される。 また, Aは出発点にもどって おり,Aの水平方向の速さは, 分裂前の物体の水平方向の速さに等しい。 運動量保存の法則の式を立ててBの速さを求め, 水平距離を計算する。 解説 初速度の水平成分の 大きさは2vcos45°=vで あり(図1), 最高点での速度 はこの水平成分に等しい。 分 裂前に物体が進んでいた水平 方向の向きを正とすると, 分裂直後のAの速度はvとなる。 分裂直後 のBの速度をv とすると, 水平方向の運動量は保存されるので(図2), √20 A, B v2 [ひ m 2m 3 3 45° 正の向き 図1 v 図2 ←一連の運動において, 鉛直方向には重力 (外力) がはたらくため、 鉛直方 向の運動量は保存されな い。 最高点で物体は水平 方向に速さで飛んでい る。 破片Aが出発点にも どっているので破片 A の水平方向の速さも”で ある。 3 mv=mx(-v)+ 2m 3 × V2 02=2v また、初速度の鉛直成分は2vsin45°=vである。 打ち上げられてか V ら最高点までの時間を とすると, 0=v-gt t= g v2 出発点から分裂地点までの水平距離は, h=vt= ...① g 分裂してから落下するまでの時間はであるから,最高点から落下点 g 2v2 までの破片Bの水平距離は, L2=2vt= ...2 g 式 ①,② から, 求める水平距離Lは, L = 4₁+12= 0² + 2v2 3v2 g g g (1) ◎鉛直投げ上げの公式. v=vo-gt を用いている。 物体、およびBの鉛直 方向の運動は,いずれも 加速度の大きさがgの 等加速度直線運動なので, 発射点から最高点までの 時間と,最高点から落下 するまでの時間は同じに なる。 (9) 115

回答募集中 回答数: 0
物理 高校生

(ウ)x=0のときとで力学的エネルギー保存則は成り立たないのですか?

(4) 物体( 190 ゴムひもによる小球の運動 屋根 次の文中の を埋めよ。 図のように,屋根の端に質量の無視できるゴムひもで小球をつな いだ。小球を屋根の位置まで持ち上げてから、落下させたときの運 動を考える。 ゴムひもの自然の長さはL, 小球の質量はmである。 図のように鉛直方向下向きに x軸をとり, 屋根の位置を原点とする。 使用するゴムひもは, 小球の位置xが x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方, x>L のとき,ゴムひもは伸 びて張力がはたらき, ばね定数んのばねとみなせる。 小球は鉛直方向にのみ運動し,地 面への衝突はないものとする。 重力加速度の大きさをg とする。 x 小球を屋根の位置 (x=0) から静かにはなして落下させた。 x=Lの位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると,x1=イである。 x=x1 での小球の速さは,ウであ る。さらに小球は下降し, 最下点に到達した後, 上昇した。最下点の位置を x2 とするこ X2 また, 最初に x1 を小球が通過してから最下点を経て, 再びxi に である。 どってくるまでに要した時間は オである。 [18 明治大 ] 向に振り子け佰く 182,18

解決済み 回答数: 1
物理 高校生

(2) 力学的エネルギーの変化量を考えるとき、動摩擦力による仕事は考えなくていいんですか?

第1章力学 問題 18 仕事と力学的エネルギー ② ばね定数k (N/m) の軽いばねの一端に,質 量m(kg) のおもりAをつけたばね振り子が ある。このばね振り子をあらく水平な床面上 物理基礎 公式 A U = 11/√ kx² 100000000 năm Q 0 -31 P IC 5/ 置き ばねの他端を固定する。 ばねが自然長のときのAの位置を原点と する。 図のように, Aを原点Oから点P(x=5/〔m))まで引っ張って、静か にはなした。Aは左向きに運動し始め、点を通過した。 その後、x=-31 (m) の点Qで静止した。 床面とAとの間の動摩擦係数をμとし、重力加速度 の大きさをg(m/s) とする。 (I)Aが点PからQまで運動する間に、動摩擦力のする仕事 W (N・m) を求 めよ。 Aが点PからQまで運動するときの, Aの力学的エネルギーの変化量 ⊿E (J) を求めよ。 (3) ⊿E = Wが成り立つことを用いて, μを求めよ。 弾性力による位置エネルギー(弾性エネルギー) U (J) (k (N/m): ばね定数 〔m〕: 伸び縮み) (I) おもりAにはたらく動摩擦力の大きさはμmg 〔N〕でPからQまでの移動 距離は8/〔m〕 である。 よって, 求める仕事 W [N·m〕 は, W=-μmg818μmgl (N・m〕 (2) 求めるのは「力学的エネルギーの変化量」なので、 おもりAの運動エネル ギーと位置エネルギーの和の変化量を考える。 Aは水平方向に運動しているので, 高さが変化しておらず重力による位置 エネルギーは考えなくてよい。 また, 点P, 点Qは自然長(原点O)からずれ た位置なので,点P, 点Qにおいて, Aは弾性力による位置エネルギーをもつ。 点P,Qにおける, 弾性力による位置エネルギー Up, UQ[J] は, それぞれ, 〈千葉工業大 〉 Up = =1/21k(50)2-252k2 =/( 9 U₁ = ½k (31)²=kl² 2 (解説) ばねが自然長から伸びたり縮んだりしているとき, ばねの両端 には自然長に戻ろうとする向きに力が生じる。 この力を弾性力 点Pでは 「静かにはなし」 点Qでは 「静止した」 ので, それぞれの点で速 さは0.すなわち, 運動エネルギーKP, Ko〔J〕 も0になる。 よって という。 4E = 0 + 25 0+ -kl² 2 == 8kl² (J] 変化後KQ+ UQ 変化前 K + Up 公式 弾性力の大きさF(N) F=kx (k(N/m〕: ばね定数 〔m〕: 伸び縮み) (3) ⊿E = Wより ※ 弾性力の向きは, 自然長に戻ろうとする向き。 - 8kl² == -8umgl よって, μ = kl mg F ⇒縮みx, 弾性力F,=kx, 弾性エネルギー U22kx2 自然長⇒弾性力0, 弾性エネルギー 0 X1 X2 mmmm 000000 F2 ⇒ 伸びzy→弾性力Fy=kx, 弾性エネルギー U2=1/2k2 自然長 注 ここで, p.39 公式 力学的エネルギーと仕事の関係と p.37 公式 運動エネル ギーと仕事の関係の違いを、しっかりとおさえておこう。 保存力である重力 弾性力について, 位置エネルギーを考えるのが 「力学的エ ネルギーと仕事の関係」 であり, 仕事を考えるのが 「運動エネルギーと仕事の関 「係」である。 1つの式の中で、重力 弾性力の位置エネルギーと仕事を同時に考え こることはない! た, ばねは伸びたり縮んだりしているとき, 弾性エネルギーを蓄えている。 エネルギーは弾性力による位置エネルギーともいう。 kl (1) W = -8μmgl〔N・m〕 (2)4E = - 8kl[J] (3)μ= mg 4. 仕事とエネルギー 41

解決済み 回答数: 1