学年

教科

質問の種類

物理 高校生

解答の図についての説明です。なぜ一部分だけしか合成波を書かないんですか??1/4tでいうと、目盛りの3.7はどうしてスルーされているんですか 追記です!なんか考えてたらどの図もなんでそうなるのかわからなくなってきました

波AとBがx軸上を反 間に1目盛りずつ進んでいる。 このと き, 次の(1),(2)の時刻での合成波の波 形をかけ。 3秒後のA 3秒後のB 1) 2秒後 2) 3秒後 2秒後のB (2) y B の波を (1) では2目盛り、(2)では3目盛り分進めて、 重ねあわ この原理にしたがって合成波を作図する。 O [101] 01 定在波 教 p.119 直線上を右へ進む波A と, 左へ進む (1) A+- B . Bがある。 A, B ともに振幅, 波長 0. 2. 3 5 4 6 8.'9 よび振動数の等しい正弦波で, T 2 3 4 5 6 7 8 9 =0で2つの波の先端が出会った状態になっている。 -T, T, 周期をTとするとき,12T, 21, 21, TにおけるA, B の波を, Aは一点鎖線, B は破線で図示し, A, B の合成波を 実線で図示せよ。 2) 時間が経過すると合成波は定在波になる。 1~9の間の節の位 置,腹の位置を番号ですべて示せ。 1)1~5の4目盛りが1波長なので波は 11 ごとに1目盛りずつ, 波Aは右, 波Bは左へ移動する。 2) (1) でかいた4つの図から,媒質の変位が常に0となる位置(節) と変位が最大となる位置(腹)をさがす。 節も腹も 1/12 波長おき に現れ、隣りあう節と腹は1波長間隔である。 24 34 T 2 3 4 5 6-7 8 9 T 2 3 7 45.6 8 9 T 3 15 6 78 (2) 節:2,4,68 腹: 1, 3, 5, 79 2 定在波の要素 教 p.119 102 点 A, B から振幅, 波長, 振動数の等しい2つの波が出ている。 A, を結ぶ直線上で合成波を測定したところ, 3.0cm おきに最大振幅 ■cm, 振動数 1.5Hz の波が見られた。 A, B から出ている波の振幅。 長, 振動数を求めよ。 振幅: 2.5cm 波長: 6.0cm 振動数: 1.5Hz

解決済み 回答数: 1
物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0
物理 高校生

エについてです 答えはあっていましたが、イマイチすっきりしないです。 どうしてこのように言えるのか詳しく教えて欲しいです 出来れば、図解があるとありがたいです🙇‍♀️

物理 問3 次の文章中の空欄 ウ . I それぞれの直後の{ }内の数値のい ずれかが入る。入れる数値を表す記号の組合せとして最も適当なものを,後の ① ~⑨のうちから一つ選べ。 3 国際宇宙ステーションは半径が 6.4 × 10℃ km の地球の上空およそ400kmの 高さで地球の周りをほぼ等速で回っている。 重力は万有引力のみで表せて地球 の自転の影響が無視できるとすると, 国際宇宙ステーションの軌道上の地表に 対する加速度は地球の中心向きであり,その大きさは地表での重力加速度の大 (a) 0.001 E きさのおよそ ウ (b) 0.06 倍である。 (c) 0.9 地球に固定された座標系が慣性系とすると,国際宇宙ステーションの中で無 重量状態にある物体が受ける慣性力の大きさは,この物体が地表で受ける重力 (d) 0.001 のおよそ I (e) 0.06 倍で地球の中心から遠ざかる向きである。 (f) 0.9 ウ H ① (a) (a) ②a ② ③ (a) ④6 ⑤ ⑥ ⑦ ⑥ (b) (b) (b) (c) (c) (d) (e) (f) (d) _(e) (f) (d) (e) (f) 08.0 02.0 GMm 400km 6.4.10→68m² 68 64 16 5/6 17 (1) = 17 119 17 256 289 0.9 289/286 289

解決済み 回答数: 1