学年

教科

質問の種類

物理 高校生

至急です!!🚨 自動車Aと自動車Bの速度が同じ大きさだと、車間距離は変化せず保たれたままになるのはなぜですか? 回答よろしくお願いします🙇‍♀️

例題 5.19 t(s) 5,19 8.0 s] リード D 速度 (m/s) 物体B 19 等加速度直線運動のグラフ■以下の文章を読みに適当な数値を入れよ。 一直線上を物体Aと物体Bが同じ向きに運 動しており、この向きを速度や加速度の正の 向きとする。 物体Aと物体Bの速度と時刻の 関係は右図で示される。 また, 時刻 0sにお ける物体Aと物体Bの位置は同じであるもの とする。 物体Aの加速度は m/s² であ O り、物体Bの加速度は は 4 時刻 (s) m/s2 である。 時刻 2s において、物体Aと物体Bの距離 2 第1章 運動の表し方 エ S である。 また, その時刻において, 物体Bに対する物体Aの相対速度は m/sである。 [19 名城大〕 時刻 0sの後, 物体Aと物体Bの位置が再び同じになる時刻は mである。 B 13 物体 A 20 等加速度直線運動 列車が一定の加速度α [m/s'] で一 [1] 直線上を走っている。 A地点を列車の前端は速さ [m/s] で u 通過した。また, A地点を後端が通過したときの速さは [m/s]であった。 (1) この列車がA地点を通過するのに要した時間 t [s] を, a, u, v を用いて表せ。 (2) この列車の長さ 1 [m] を, a, u, vを用いて表せ。 (3) この列車の中点がA地点を通過したときの速さ [m/s] を, u, vを用いて表せ。 ➡13, 14 ヒント 19 (エ) 求める時刻を t [s] として, AとBの移動距離についての方程式を立てる。 20 列車がA地点を通過する間に, 列車はその長さだけ進んでいる。 オ 15,16,17 A 21 等加速度直線運動 直線上の高速道路を 速さ 24.0m/s で走っていた自動車Bの運転手は, 前方に低速の自動車Aを発見し, ブレーキをかけ て一定の加速度で減速し始めた。 ブレーキをかけた瞬間を時刻 t=0s とすると, Bは t=2.0s に速さ18.0m/sになった。 1501. 一方,速さ 8.0m/sの等速で進んでいたAはt=2.0s の瞬間からアクセルを踏んで 一定の加速度で加速し始めた。 その結果, t=4.0s のとき, 車間距離は最も短くなって 5.0mとなり,衝突をまぬがれた。 A,Bの進行方向を正とする。 (1) まずBの加速度 αB 〔m/S²] を,次にAの加速度 αA [m/s'] を求めよ。 (2) t = 2.0s の瞬間のAとBの車間距離 1 [m] を求めよ。 u

回答募集中 回答数: 0
物理 高校生

2番の問題がわかりません。左上には独立な試行の利用とありますが、この問題は本当に独立してますか?三日目に出会えるかは二日目によって決まりますよね?

232 独立試行の利用 題 大学には4つの食堂があり、 AとBの2人は、それぞれ毎日正午に、 品とは異なる自の食文はうちの会を無作為に選んで昼食を食べること にしている。 1日目に2人は別々の食堂で食事をしたとして、次の職率を (1) 2日目に会える確率 (2) 5日目に、初めて2人が食堂で会える確率 ARES Focus 単 考え方 食堂をX. Y, Z. Uとし、1日目にAX. BY の食堂を利用したとすると、2日目 食堂の選び方は、次の通りになる。 KYYYZZzUUU A X食堂以外の3つの食堂 YKZUKZUXZU Y食堂以外の3つの食堂 B 1* (②) *** cmd 2 いろいろな試行と確率 1日目に利用した食堂 2日目に会える場合 2日目に2人が会えるのは,1日目にそれぞれが利用した食堂以外の2箇所である。 (1) A が2日目に利用する食堂の選び方は3通り Bが2日目に利用する食堂の選び方も3通り より 2人の2日目に利用する食堂の選び方は、 3×3=9 (通り) 2人が2日目に会えるのは、 1日目にそれぞれが利 用した食堂以外の2つから同じ食堂を選んだときであ るから, その選び方は、 2 よって、2日目に会える確率は, (2) × ² - 6561 X- 9 (2) 2日目に会えない確率は, (1) の余事象の確率より、 1-1/---/7/20 99 686 2 であり 2日目から4日目まで会えず、 5日目に会える から 求める確率は、 (一橋大改) 1日目の食堂以外の 残りの3つから選ぶ、 |積の法則 A X-Z B Y → Z 1日目 2日目 AX → U BY →U 表などを利用して条件を満たす試行の確率を求める 2日目 3日目 4日目 409 「 ・ (1) 2日目にも会える確率 (2) 2日目と4日目は会えず, 5日目に2人が食堂で会える確率 Als B ↓ 5日目A 例題232 において、 1日目に2人が同じ食堂で食事をした場合、次の確率を求め 232より 第 7 章

回答募集中 回答数: 0
物理 高校生

リードa15ページの問題です! 14番bでは力を分解せずに解いているのに対し15番の(1)では力を分解した同方向のモーメントで解いていて、分解せずにそのまま1/2L×W-T cos30=0で答えが出てこないのは何故ですか?

リード C 0,1 198N /第2章 剛体にはたらく力のつりあい 15 1964 基本問題 13. 棒のつりあい 長さ20cmで質量 1.0kg の一様 な棒ABの両端におもりをつるし, A から 7.0cmの点 Pにばね定数が980N/m のばねの一端をつけた。 ばね の他端を天井に固定して静かに離すと, ばねは10cm伸 び棒は水平につりあった。 A, B につるしたおもり km の質量 ma, me [kg] を求めよ。重力加速度の大きさをg=9.8m/s²とする。 a&№. (a) '///////// 60° A A 14. 棒のつりあい●長さ 0.60m, 重さ 60N の一様な棒 AB を,A端につけた糸でつる し力Fを加えて図(a)~(c) のよ うに支えた ((a) Fは水平 (b) カFは鉛直上向き (c) 棒 AB BL は水平)。 それぞれの場合の糸の張力 T 〔N〕 と F [N] の大きさを求めよ。 F 7.0cm (b) . A なすように立てかける。棒のA端から 1/31 GON ↓F 980 N/m 15. 棒のつりあい 長さ 重さ W の一様な棒AB があり,A 端はちょうつがいで壁につけられ, 他端Bは, Aの真上の壁上の点 Cに結ばれた糸により, 図に示す状態で支えられている。ただし, 棒は壁に垂直な鉛直面内にある。 0.10m B (1) 糸の張力の大きさを求めよ。 (2) 棒のA端がちょうつがいから受けている抗力の水平成分,鉛 直成分をそれぞれ Rx, Ryとする。 Rx, Ry の大きさと向きをそ れぞれ求めよ。 例題3 16. 壁に立てかけた棒のつりあい 長さ 1[m]の軽い棒 AB を, 水平であらい床と鉛直でなめらかな壁の間に,水平から 60°の角度を (c) '///////////// 45° l離れた点に重さ W 〔N〕 の A IC 13 130° 60° B 例題3 M60B 例題 3 60° PE, COBY B Na おもりをつるしたところ,棒は静止した。 (1)棒にはたらく鉛直方向および水平方向の力のつりあいの式と,点 Bのまわりの力のモーメントのつりあいの式を立てよ。 棒が壁か ら受ける垂直抗力の大きさを NA 〔N〕, 床から受ける垂直抗力の大きさをNB〔N〕 , 摩 例題 4,24

回答募集中 回答数: 0
物理 高校生

この問題の2以降がわかりません 2はμmglの使い方 3以降は計算式がわかりません 説明がないとモヤモヤするので できれば説明もお願いします。

31 物体に作用する力は、保存力とそれ以外の力 (非保存力とよばれる) に分けることがで きる。そこで,保存力の例としてばねの力 (弾性力) を, 非保存力の例として摩擦力をと り上げ、これら2種類の力の性質を比べてみよう。 [A] なめらかな水平面上の点に 質量m[kg]の物体が静止してい る。Pは,他端が壁に固定された自 然の長さる [m]のばねにつながれて いる。 図のように, 0 を原点として ばねに平行にx軸をとり,Pにx軸 の正の向きの初速ひ。 [m/s] を与えた ら、ばねの長さが[m] になったと P 0000000 0000000 BY x 後 ころでPの速さは0m/sとなった。 これを実験 A とする。 (1) ばね定数をk [N/m〕 として を求めよ。 ただし, ばねの質量は無視できるものと する。 [B] 次に、ばねから物体Pを外し, 実験 A とは別のあらい水平面上に静かに置く。 初 速vo を与えると, P は置かれた位置からまっすぐにL[m] だけ進んで止まった。これ を実験 B とする。 (2) Pと面との間の動摩擦係数をμ', 重力加速度の大きさをg [m/s2] としてLを求め よ。 [C] このように, 実験 A と実験 B のどちらの場合でも、ある時点でPの速さは0m/s となるが、このあと両者には違いが現れる。つまり, 実験BではPは静止したままだ が,実験AではPは一瞬止まるだけですぐに逆向きに動き始め、ある別の点Qでふ たたび速さが0m/s となる。 (3) 原点Oから点 Q までの長さを求めよ。 [D] それでは,弾性力と摩擦力が物体Pに同時に作用したら,その運動はどうなるだ ろうか。 ばねを用いる実験 A をあらい水平面上で行うとしよう(これを実験Cとす る)。 座標軸・ばねの設定は実験 A と同じであり,Pと面との間の動摩擦係数は実験 B と同じμ′とする。はじめPは原点Oに静止しているとして次の問いに答えよ。 (4) 物体Pにx軸の正の向きに初速”を与えると,Pは原点Oからまっすぐに x0 [m] だけ進んで止まった。このx を求めよ。 (5) 実験Cで,物体Pが止まったあとそのまま動かなかったとすれば,Pと面との間 の静止摩擦係数μは,どのような条件を満たすことがわかるか。ただし,(4) の x を そのまま用いよ。 16%+ at

回答募集中 回答数: 0
物理 高校生

赤丸の問題が分かりません。答えはm=2です。 私はΔl=3√3d/2(=定数)であることから714(m+1/2)=429(m+3/2)と立式したのですが、答えが求まりませんでした。

薄膜における光の干渉は, シャボン玉の色付きなどに見られる身近な現象であるとともに、 膜厚計測など工学的にも重要な現象である。 図1のように, 屈折率 n, 厚さdの透明なフィ ルムに対して,入射角 Q1で波長の単色平面波の光が入射する場合を考える.ただし 262 n> 1 とし,nは波長によらず一定とする. 経路 Ⅰ 経路ⅡI 日 2 B 図 1 C 検出器 BY フィルム 0JJS bar ASTRO AR TEKS TERRES OD TUALE (い)の [1] 下記の経路I, 経路ⅡI を進む光について考える. フィルム周囲の媒質は屈折率 1.00 の空気とする. 以下の問いに答えよ. 経路 Ⅰ : 点Aで屈折し, 点 B で反射し、点Cで屈折して点Dに達する経路 経路ⅡI: 点A'を通り, 点Cで反射し、 点Dに達する経路 (1)経路Iの点Aで屈折した光は,屈折角 62 の方向に進んだ. sing を n, Q を用い て表せ. (2) 経路Iの各点 A, B, C および経路ⅡIの点Cを光が通過する前後における波長および 位相の変化について,最も適切な選択肢を以下の①~⑥の中から選べ.同じ選択肢を複 数回選択してもよい。 波長は長くなり, 位相は変わらない. (2) 波長は長くなり,位相は 180° ずれる . (3) 波長は変わらず、 位相も変わらない. (4) 波長は変わらず, 位相は 180° ずれる . (5) 波長は短くなり, 位相は変わらない. (6) 波長は短くなり,位相は180° ずれる.

回答募集中 回答数: 0