学年

教科

質問の種類

物理 高校生

名問の森の質問です! ?のところのV1とV2の向きがなぜそうなるか分からないので教えて下さい!

122 電磁気 38 電磁誘導 十分に長い直線導線Lがy軸上 にあり, 1辺の長さ2aの正方形コ イル ABCD が 辺ABをx軸上に, 辺BC を軸に平行にして置かれて いる。 コイルの電気抵抗は R で, コ イルの位置は辺ABの中点Mの座 標xで表す。 装置は真空中に置かれ, 真空の透磁率 μlo とする。 コイルの 自己誘導は無視する。 Foll 導線L に+yの向きに一定電流Iを流し,コイルを一定の速さ で,xy平面上,x軸に沿って導線から遠ざける。コイルがx(a)の 位置を通過するときについて, (1) L による,点A,B での磁場の強さ H1, H2 をそれぞれ求めよ。 (2) コイル全体での誘導起電力の向き (時計回りか反時計回りか)と大 きさVを次の2つの方法で求めよ。 Level (1)★★ (2) (a)★ (b)★ (3)★ Point & Hint 電磁誘導は一般にはファラデーの電磁誘導 の法則に従っている 0 (2) (b) 微小時間⊿tの間の磁束の変化⊿のを調 べる。 といっても, コイルを貫く磁束のはコイ ル内の磁場が一様ではないので(積分しない限 り) 計算できない。 そこで, 変化した部分だけ に目を向ける。 近似の見方も必要。 L D A -2a- M C B (a) 1つ1つの辺に生じる誘導起電力を調べる。 (b) コイルを貫く磁束の変化を調べる。 (3) x=2aのとき, コイルに加えている外力の向きと大きさを求め よ。 (九州大+お茶の水女子大) -V Base 電磁誘導の法則 磁束① = BS V=-N40 4t 一面積S N巻きコイル ※マイナスは磁束の変化を 妨げる向きに誘導起電力 が生じることを表す。 LECTURE (1) A,Bでの磁場は ? I H₁ = 2π (x− a) 2π (x+a) (2a) 直線電流Ⅰのつくる磁場は紙面の裏へ の向きとなり、磁力線を切って進む AD と BCで誘導起電力 V1, V2が図の向きに発生 している。公式V=vBlより V₁ = vμoH₁.2a V2= vμoH22a 2つの起電力が逆向きとなっていることと, H>Hより全体の起電 力は時計回りで (b)微小時間tの間にコイルはx=v4t だ け動き,右の赤色部分で磁束を402 増やし、 灰色部分で4の減らす。 そこで,磁束の変化 40は H2= 40= 40₂ 40₁ =μoH22a4xμoHi・2a4x 2μo lav π (x²-a²) At 符号マイナスは磁束の減少を表している (H) > H2 より定性的にも明らか)。 よっ て, 誘導起電力の向きは、父の向きの磁場 を生じるようにコイルに電流を流す向きで あり、時計回りと決まる。 40=2μoIav V = π (x² - a²) 4t V=V1-V2=2μova (H1-H2)= 2μo Iav π (x²-a²) (3) x=2a より V= 2μo Iv であり、誘導電流 3π えは時計回りに流れ, オームの法則より i = R 38 電磁誘導 2μo Iv 3πR V₁ H₁ v A -x+a H₁ 4x F D 123 H 2 V i V2 A ⊿xは微小なので ③ 磁場はHやHで 一定としてよい。 B H2 4x C i F2 B Iとの向きから, ③ F は引力, F2は反 発力と決めてもよい。

回答募集中 回答数: 0
物理 高校生

1番教えてください 答えはA B共に2.1です 2枚目のは自分で解いてみたんですけど分からなくて、、、

三角関数 Ⅰ ワーク5 1年 [ PT1・PT2 ・OT・ PT 夜 ] 学籍番号 氏名 《b》角9と離れた辺 sin (0)=b より b=cxsin0 b 【手順】 三角関数表から sineの値を読み取る a sinQの値xc を計算 【例題】 ① ② の図の直角三角形の辺の長さを求めなさい。 ① 三角関数表で sin の値を読み取る ② 5.0 三角関数表で sinQの値を読み」 b sin25°の値は 0.423. 4.0 25° ☐ sin0 の値xc を計算 b=0.423 x 5.0 = 2.115~2.1 答 2.1 《 α》 角0と隣接する辺 cos (8)= より a=cxcose C 20 【手順】 三角関数表から coseの値を読み取る cose の値xc を計算 【例題】 ①、②の図の直角三角形の辺αの長さを求めなさい。 11 三角関数表で cose の値を読み取る (2) 5.0 cos25° の値は 0.906 4.0 cost の値xc を計算 △25° 0 a = 0.906×5.0 a =4.53~4.5 答 4.5_ 【問題】 (1)~(10)の直角三角形でaとbの値を求めなさい。 (1) (2) 4.0 3.0 。。 b △45° △ 28° a a ■ b 45°_sin45°の値は 0.707 sinQの値xc を計算 ☐ 答 2.8_ b 45° ☐ (3) b=0.707×4.0 =2.828~2.8 ■ 三角関数表で cos の値を読 cos45°の値は 0.707 cose の値xc を計算 a = 0.707×4.0 =2.828~2.8 5.0 a 答.2.8_ 15° b ☐ 完了 65% 三角関数表 学籍番号 0 cos o sin 0 0 cos o 1 1.000 0.0175 31 0.857 2 0.999 0.848 32 0.0349 0.0523 33 3 0.839 4 0.0698 34 0.829 5 0.0872 35 0.819 6 0.999 0.998 0.996 0.995 0.993 0.990 0.989 0.1564 39 0.1045 36 0.809 7 0.1219 37 0.799 8 0.1392 38 0.788 9 0.777 10 0.985 0.1736 40 0.766 11 0.982 0.1908 41 0.755 12 0.978 0.743 13 0.974 0.208 42 0.225 43 0.242 44 0.731 0.719 14 0.970 15 0.966 0.259 45 0.707 16 0.276 46 0.695 17 0.961 0.956 0.951 18 19 0.946 0.292 47 0.682 0.309 48 0.669 0.326 49 0.656 20 0.940 0.934 21 0.358 51 22 0.927 0.375 52 0.342 50 0.643 0.629 0.616 0.391 53 0.602 0.407 54 0.588 0.423 55 0.574 23 0.921 24 0.914 25 0.906 0.899 0.438 56 0.559 26 27 0.891 0.454 57 0.545 28 0.469 58 0.530 0.883 0.875 29 0.485 59 0.515 30 0.866 0.500 60 0.500 21#2C(1/16)

未解決 回答数: 2
物理 高校生

1番の答えが A B 共に2.1 になるんですけどやり方教えてください🙇‍♂️ 2枚目は自分で解いたものです。

三角関数 Ⅰ ワーク5 1年 [ PT1・PT2 ・OT・ PT 夜 ] 学籍番号_ ( b》 角0と離れた辺 b |sin(0)= より b=cxsin0 b 【手順】 三角関数表から sinの値を読み取る a sinQの値xc を計算 【例題】 ① ② の図の直角三角形の辺の長さを求めなさい。 三角関数表で sine の値を読み取る (2) 5.0 b sin25°の値は 0.423. 4.0 25° 0 sin0 の値xc を計算 b = 0.423 x 5.0 =2.115~2.1 答.2.1 《α》 角0と隣接する辺 cos (0)= より a=cxcose a 【手順】 三角関数表から coseの値を読み取る cose の値xc を計算 【例題】 ① ② の図の直角三角形の辺αの長さを求めなさい。 ① 三角関数表で cose の値を読み取る (2) 5.0 cos25°の値は0.906 4.0 cost の値xc を計算 △25° a = 0.906 x 5.0 a =4.53~4.5 答 4.5_ 【問題】(1)~(10)の直角三角形でaとbの値を求めなさい。 (1) (2) 3.0 4.0 b b △ 45° △28° a a b 0 氏名 ☐ 三角関数表で sinの値を読み] 45°_sin45°の値は 0.707 sin0 の値xc を計算 ☐ 答 2.8_ b 45° ☐ (3) b=0.707×4.0 =2.828~2.8 ■ 三角関数表 cose の値を読 cos45°の値は 0.707 cose の値xc を計算 a = 0.707×4.0 =2.828~2.8 5.0 a 答.2.8_ 15° b ☐ 完了 65% 三角関数表 学籍番号 0 cos o sin 0 0 cos o 1 1.000 0.0175 31 0.857 2 0.848 0.0349 32 0.0523 33 3 0.839 4 0.0698 34 0.829 5 0.999 0.999 0.998 0.996 0.995 0.993 0.990 0.1392 38 0.0872 35 0.819 6 0.1045 36 0.809 7 0.1219 37 0.799 8 0.788 9 0.1564 39 0.777 0.989 10 0.985 11 0.982 0.1736 40 0.766 0.1908 41 0.755 12 0.978 0.743 0.208 42 0.225 43 13 0.974 0.731 14 0.970 0.242 44 0.719 15 0.966 0.259 45 0.707 16 0.961 0.276 46 0.695 17 0.956 0.292 47 0.682 18 0.951 0.309 48 0.669 0.326 49 0.656 0.643 19 0.946 20 0.940 21 0.934 22 0.927 0.629 0.342 50 0.358 51 0.375 52 0.391 53 0.616 23 0.921 0.602 24 0.914 0.407 54 0.588 25 0.906 0.423 55 0.574 26 0.899 0.438 56 0.559 27 0.891 0.454 57 0.545 28 0.469 58 0.530 29 0.883 0.875 0.866 0.485 59 0.515 30 0.500 60 0.500 21#2C(1/16)

回答募集中 回答数: 0
物理 高校生

有効数字について質問です 72の(2)について、垂直抗力を求める式は合っているのですが、端数処理がよくわかりません。 どうして解答は20なのでしょうか?

3.力のつりあい 35 70.弾性力と垂直抗力 内壁がなめらかな箱の中につけ,他端におもりをつ ける。箱を水平に固定した状態で,おもりを 10N の力で水平に引いたところ,ばねが 10cm伸びた。 重力加速度の大きさを9.8m/s°とする。 (1) ばねのばね定数を求めよ。 (2) 箱の左側をもってゆっくり傾けると,ばねはしだいに伸び, 30°傾けたとき,伸びが 49cm となって,おもりは箱の内壁にちょうど接した。おもりの質量を求めよ。 (3) 箱を鉛直に立てたとき,おもりが内壁から受ける垂直抗力の大きさを求めよ。 ヒント(3) おもりは重力,弾性力、垂直抗力の3つの力を受けており,それらはつりあっている。 図のように,ばねの一端を 内壁 F000000 -49cm→ 例題8 71.つりあいと作用·反作用 Aと質量10kgの物体Bが,水平面上に重ねて置かれている。 重力加速度の大きさを9.8m/s°とする。 (1) 物体Aが受ける力を矢印で描き,その大きさと何から受 ける力かも示せ。 (2) 物体Bが受ける力を矢印で描き,その大きさと何から受 ける力かも示せ。 (3)(1),(2)の力のうち,作用·反作用の関係にあるものを答えよ。 図のように,質量 5.0kg の物体 A B 例題9 72.糸でつながれた2物体 と質量1.0kgの物体Bを糸でつなぎ,軽くてなめらかに回転す る滑車にかけ, Aの下に板Cを置いて静止させる。重力加速度 の大きさを9.8m/s° とし,はじめBの下におもりはないとする。 (1) Aが受ける糸の張力と,AがCから受ける垂直抗力の大 きさはそれぞれいくらか。 (2) Bの下に質量 1.0kg のおもりをつるしたとき,Aが受け る糸の張力と,AがCから受ける垂直抗力はそれぞれいくらか。 (3) CがAから受ける力が0になるのは,Bの下に何 kg のおもりをつるしたときか。 ヒント糸はその両端につながれた物体に同じ大きさの張力をおよぼす。 図のように,質量 3.0kgの物体A A B 例題9 73.磁石の力と作用·反作用 の上に置かれている。重力加速度の大きさを9.8m/s° とする。 (1) Aが受ける重力と垂直抗力を図示し,それらの大きさを 質量0.50kgの磁石Aが木の机 A 求めよ。 (2) Aの中心に軽い棒を取りつけ, Aの上に,中心に穴のある 質量 0.50kgの磁石BをAと反発するようにのせると,浮い た状態で静止した。このとき,AとBが受ける力を図示し、 それぞれの力の大きさと,何が何から受ける力かも示せ。 例題9 B 第I章

未解決 回答数: 1