学年

教科

質問の種類

物理 高校生

(3)で最終的に言いたいことは、θ=θ0だからθで入射して屈折することなく直進した先にm=0のときの明線ができるってことですか? あと、問題にはなっていませんが、ガラスと空気中では屈折率が異なるのにλは変化しないんでしょうか?(媒質が変わらないから変化しないのかなと思ったん... 続きを読む

353折格子 回折格 回折格子に平面波の光を当てると, 子の後方に置かれたスクリーン上に干渉縞が現れる。 じま 回折格子 の断面 00 スリット間隔 (格子定数) dの回折格子に, 波長の平面波の光 を当てたとき,明線の方向が回折格子の法線となす角を0とする。 (1)入射光を回折格子に垂直に当てたとき, sin を入, d および 整数を用いて表せ。 00- 2 図1のように入射光の方向を角度 6。 だけ傾けて回折格子に当 てたとき、回折前後の波面を考え, 隣りあうスリットを通過す」 図1 る光の経路差を求めることにより, sin0を0,入, d, および整数mを用いて表せ。 (2)において、入射光の進行方向と=0の明線ができる方向とのなす角を求めよ。 40=30°= 0.4d のとき, 明線の方向として最も適当なものを図2の(ア)~(カ)の中か ら1つ選べ。 図2 回折格子 * の法線 明線の * 入射光 方向 (ア) (イ) (ウ) (エ) (オ) (力) [兵庫県大 改] -347 物

回答募集中 回答数: 0
物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0
物理 高校生

線を引いたところで飛行機に対して平行な方向へ投げたら相対速度と実際の速度は変わりますか? また最後の問いの時はY軸方向の初速度が50だからずっと50m/sということで合っていますか?

第1問 図1のように、水平な地表面上に軸と y軸を設定する。軸と軸は直交している。飛 行機がy軸の上方490mを速さ50m/sで y 軸正 の向きへ水平に飛んでいる。 この飛行機が xy 座 標の原点 0 の真上 (鉛直上方) を通過した瞬間に 小球を投げ出す場合を考える。 空気抵抗は無視で きるものとし、重力加速度の大きさを 9.8m/s2と して以下の問いに答えよ。 数値については,有効 数字2桁で答えること。 高さ490m 速さ 50m/s 図 1 → 小球を水平方向に投げ出すとする。 飛行機に対する小球の速度をある向きである大きさに したら, 小球が原点0に落下した。 (2) 問1 小球を投げ出す速度 (飛行機からみた速度)の大きさと向きを答えよ。 向きを答える には,どの軸の正負どちら向きかを答えること。 問2 小球が投げ出されてから地表に達するまでにかかる時間を求めよ。 (T) 次は,小球を飛行機に対して速さ4.9m/sでæ軸正の向きに投げ出した場合を考える。 問3 落下地点のæ, y 座標をそれぞれ求めよ。 (31) 今度は,小球を飛行機から見て真下向き (飛行機に対する相対速度が鉛直下向き)に速さ 49m/sで投げ出した場合を考える。 問4 落下地点のæ, y 座標をそれぞれ求めよ。

回答募集中 回答数: 0
物理 高校生

物理です至急お願いします、 教科書の問題を解いたのですが答えが見つからないので正しいか見てほしいです。

例題 8 ヤングの実験 2枚のついたてA, B を平行に立て, Aにはス リット So, B には狭い間隔 dでスリット S1 S2 が備えられている。 Bから距離Lはなして, A, Bに平行にスクリーンCを置く。 S の左側の 光源から、波長の単色光 (赤色) を送ると, C に明暗の縞模様が観察された。 S1, S2 の垂直 等分線とCとの交点をOとする。 So から S, 光源 S2 までの距離は等しく, L≫ d とする。 次の各問に答えよ。 S₁ L B (1) 点0から上向きに距離 x はなれた点をPとする。 S, S2 から点Pまでの光の経路差を, d, L, を用いて表せ。 ただし, L≫x とし, 0が十分に小さいとき, sin0≒tan が成り立つことを用 いよ。 (2)点から上向きに数えて1番目の明線と点0との間の距離を求めよ。 目 光 仮 ト 求 準 10 75 ① 指針 S, S2 から点Pまでの2本の光の経路は,L≫dなので,平行とみなし、経路差を考える。 2 この経路差が波長の整数倍のときに,2つの光は強めあう。 解 (1)S1, S2 から点Pまでの光の経 路は, L≫dであり, 平行とみなすこと ができる。 したがって, 図のように, 経 路差は dsin である。 0は十分に小さ いので, 近似式を用いると, L x dsin0≒dtan0=d ...1 P Sz 0 0 S₁I 経路差 dsin 0-m) (2)点から数えて1番目の明線は, S, S2 からの経路差が入となる位置にできる。 求める距離を x' とすると, 式 ① を用いて, L x'= L入 d 類題 8 ヤングの実験で, 間隔が0.50mmのスリットに単色光を入射させたところ, 1.5m はなれた スリットに平行なスクリーン上の中央付近に、間隔が1.8mmの干渉縞が観察された。この光の 波長を求めよ。 ③ 15 20 TRY 干渉縞のようすを考えよう 例題8において,次の (ア)~ (エ)に示すように実験条件を変えた場合, 点0から数えて1番目 この明線の位置は、0に近づくか, 0から遠ざかるか, それとも変わらないか。 理由とともに答 25 えよ。 (ア) スリットの間隔dを大きくした場合 A = L とざかる (イ)スリットからスクリーンまでの距離Lを大きくした場合 近づく (ウ)光源の単色光を赤色から青色のものに変えた場合→小さくなるか (エ) BC 間を屈折率n (1) の液体で満たした場合 202 第II章 波動 ・きょり→丈 入は小さくなる→ちがおく 4 スク

回答募集中 回答数: 0
物理 高校生

(3)の青ペンのところがわかりません。 どうして変位を-4mとして解くのですか

問題 03 相対速度・ 相対加速度 第1章力学 物理基礎 公式 相対加速度 wwwww (Aに対するBの相対加速度)(Bの加速度) (Aの加速度) \ www Aが基準 www 基準を引く 図2のv-tグラフの傾きから, Aの加速度は1.0[m/s], Bの加速度 はαB=2.0〔m/s2] と読み取れるので, 求める相対加速度4AB 〔m/s2] は. aAB = AB-AA= -2.0-1.0=-3.0[m/s2] (3)(1),(2),Aに対するBの相対速度, 相対加速度を求めた。 これより, 時 刻 t = 0 におけるAに対するBの運動のようすを図示すると、下図のように なる。 図1のように,一直線上で運動して いる物体AとBがある。 時刻t=0に おいて,物体AとBは4.0m離れてい て, v-tグラフ (図2) のような等加速 度直線運動をしていた。 ある時間後, 物体AとBは衝突した。 ただし,速度 と加速度は右向きを正にとるものとす る。 有効数字2桁で答えよ。 速度 物体A 0- -4.0m- 図1 2 速 1 物体A 0 V [m/s] 物体B (1)時刻 t = 0 において, 物体Aに対 するBの相対速度はいくらか。 物体B 0 (2) 物体AがBに衝突するまでの物 体Aに対するBの相対加速度はいくらか。 (3) 物体AとBが衝突するまでの時間はいくらか。 0 1 2 経過時間[s] <t=0のとき> 図2 v-tグラフ A (静止) f[s]と同じである。s=uot + 1/2atより、 13.0m/s2 B 1.0m/s - x(m) (4) 物体AとBが衝突する直前の相対速度の大きさはいくらか。 -4.0 0 <弘前大 > はじめのBの位置をx=0[m] とし, 右向きを正とすると, はじめのAの 位置はx=4.0 〔m〕 になる。 (3)で求める時間は, 初速度をv1.0 [m/s], 加速度をa=3.0[m/s2] として, 変位s=4.0[m] となるまでの時間 d₁o 1 -4.0 = 1.0.++ ( (-3.0) t2 2 相対速度 (3t+4) (t-2)=0 これより=-1/3.2 t= 運動している観測者から見た物体の運動を相対運動という。 (解説) (I)「Aに対するBの相対速度」とは, 「Aから見たBの速度」 すなわち「Aと一緒に運動する観測者から見たBの速度」のことである。 公式 (Aに対するBの相対速度)= (Bの速度)(Aの速度) ww Aが基準 wwwwwww 基準を引く 図2のv-tグラフより 時刻t=0において, Aの速度はv=0[m/s], B の速度はv=1.0 [m/s] である。 よって, 求める相対速度 VAB [m/s] は, VAB=UB-VA=1.0-0=1.0[m/s] (2)速度と同じく, 加速度も相対加速度を考えることができる。 この式 (tについての2次方程式) を解くと, t>0なので,t=2= 2.0[s] を選べばよい。 (4) 衝突する直前の相対速度vAB 〔m/s] は,v=vo + atより よって, VAB'=-5.0[m/s] 求める相対速度の 「大きさ」 は, 5.0m/sである。 UAB′ = 1.0+(-3.0) 2.0 (1) 1.0m/s (2)- -3.0m/s2 (3)2.0s (4)5.0m/s 1. 速度 加速度 11

回答募集中 回答数: 0