学年

教科

質問の種類

物理 高校生

(3)で、なぜABの中央の点が腹になるのか分かりません。詳しく教えていただきたいです。

基本例題46 波の干渉 物理」 水面上の6.0cmはなれた2点A,Bから,同位相で 振幅が等しく, 波長 2.0cmの波が出ている。 図の実 線はある瞬間の山の位置, 破線は谷の位置を表してい る。 波の振幅は減衰しないものとする。 ① 2つの波が弱めあう点を連ねた線(節線)をすべ て図中に描け。また, 節線は全部で何本あるか。 指針 (1) 弱めあう場所は, 実線(山) と 破線(谷)が重なる点であり, 節線はそれらを連 ねたものとなる。 (2) 点Pはどのような振動状態にあるか。 AP= 8.0 cm, BP=5.0cm とする。 (3) 節線が線分 AB と交わる点は,Aから測ってそれぞれ何cmのところか。 (2) APとBPの距離の差が, 半波長の偶数倍で あれば強めあい、奇数倍であれば弱めあう。 (3) 線分AB上では、互いに逆向きに進む波が 重なりあい, 定常波ができ ている。 解説 (1) 節線は, 山と谷が重な る点を連ねた 線であり,図 P. 14.波の性質 171 基本問題 348, 349 のようになる。 節線の数は6本である。 (2) AP-BP=3.0cmであり, 半波長1.0cm の 3倍(奇数倍) である。 したがって, P あうため、振動しない。 (3) 線分AB上には定常波ができており, 節線 は AB上の定常波の節を通る。 ABの中央の点 は腹であり,腹と節の間隔は波長の1/4 (0.5 cm), 節と節の間隔は半波長 (1.0cm) である。 これから 求める場所は, Aから 0.5, 1.5, 2.5, 3.5, 4.5, 5.5cmのところとなる。 基本例題47 波の屈折 物理」 図のように,波が媒質I から媒質ⅡI へ進む。媒質 Ⅰ, Ⅱ の中を伝わる波の速さは、それぞれ2v, vである。 面AB QPoint A, Bは同位相で振動しているので, A,Bを結ぶ線分の中点は,定常波の腹になる。 ?? I SE HA 基本問題 351 B C

未解決 回答数: 1
物理 高校生

物理の電磁気に関する問題です 出典:大阪大学(理系)2019 2枚目の写真にある問4について、解説では極板Dを移動しても電気量は変わらないため電荷の保存則を用いていますが、 ①「電気量が変わらないのはスイッチ1を切ったから」と言う解釈で良いのでしょうか? ②解説にある等... 続きを読む

22 2019年度 物理 〔2〕 以下のような,二種類の回路で起こる現象について考えよう。 お I.図1に示すように, 3枚の平行極板 A, B, D が置かれている。極板Aと極 板Bの位置は固定されており,極板Dは摩擦なく, 平行を保ったまま極板に NATURE 垂直な方向に動く。極板D は, スイッチ S を介して電圧 V の直流電源,ス イッチ S2 を介して自己インダクタンス L のコイルとつながっている。 3100 最初に極板 D は極板 A-Bの中間に置かれており,極板D-Aと極板D-Bの 間隔はともにdで極板間は真空になっている。このとき極板 D-A,極板 D-B からなるコンデンサーの静電容量は両方ともにCであった。スイッチ SL とスイッチ S2 はともに開いていて,どの極板にも電荷は蓄積していないもの とする。極板 D の変位をx(x <d), 最初の位置をx=0とし、極板Bか ら極板Aへの向きをxの正の向きとする。極板の面積Sは十分広く, 極板 きとする。他の面積は十万 16 の厚みはd に比べて十分薄いものとする。 極板の端の影響は無視できる。ま た導線及びコイルの抵抗は十分小さく, 無視できるとする。 61923 idid: *** Č6 +6 Aとせよ。 33817343 AJAN B D L X 4 #5820 ASHXU 05-0400 (3₂/Stot 図 1 FV (1) 02 (>) m ようこ出店 narosa # (3)

回答募集中 回答数: 0
物理 高校生

(5)からがわからないので教えてください

221 波の反射と定常波 右図のように,媒質がx軸 ST に沿って置かれており, 原点Oに波源がある。x=0 における媒質の位置をP, x=Xにおける媒質の位置 をQとする。 波源による時刻におけるPの変位は, y = A sin 2 ft と表され,この振幅 A, 振動数fの単振 動は,速さ”の正弦波Iとしてx軸の正の向きに伝 わっていく。 x =L (>0)の位置にx軸に垂直な壁があ り波はこの壁で自由端反射をする。 波は減衰するこ となく伝わり, 反射によっても減衰することはないも a-B のとする。なお,sina + sinβ=2sin+cos 2 ya P yo1 0 波 I →ひ A x=X TARA x=L を用いてよい。 (1) 波源を出た波Iが, 座標x=X (0≦X≦L)に到達するのに必要な時間はいくらか。 (2) 波Iによる時刻t における Q の変位 21 は、時間だけ前の時刻 t-t におけるPの 変位に等しいことを用いて, をA,f, t, t で表せ。 (3) 波源を出た波が,壁で反射されて、再び座標 x = X に到達するのに必要な時間 はいくらか。 (4) この反射された波ⅡIによる時刻における Q の変位y2 を, A. f.t, tで表せ。 (5) Q の変位yは、波Iによる変位と波Ⅱによる変位の和となる。リをXの関数 とtの関数との積の形で表せ。 (6) 波Iと波ⅡIとが重ね合わさった波の座標x = X における振幅はいくらか。 (7) 隣り合う腹と腹との間隔はいくらか。 ヒント 220 センサー 69 Chapter 16

回答募集中 回答数: 0
物理 高校生

1,2,3とも解りません。解き方(公式等)を教えて欲しいです。

問題 1 ケプラーくんは、質量Mの超巨大ブラックホール、 ガルガンチュアの周囲を公転する宇宙船の乗務員である。 初 め、この宇宙船はガルガンチュアを中心とする半径rの真円軌道を描いていた。 この宇宙船の中で生活し続けて早1 年、今、この宇宙船に危機が迫っていた。 そう、異臭問題である。 乗組員の生活ゴミやら排泄物やらは、 宇宙船の中 で溜まりに溜まり、もはや臨界点を突破していたのだ。 ケプラーくんは、 そこで異臭の原因を全部カプセルに詰め込 んで、船外へ捨ててしまうことにした。 質量 mo のカプセルを捨ててしまったところ、 宇宙船は質量がmにまで減 り、ガルガンチュアを一方の焦点とした近日点距離が遠日点距離が R であるような楕円軌道に移った。 公転軌道 はどの軌道の場合でも、ガルガンチュアのシュバルツシルト半径に比べて十分大きいものとし、 古典的な万有引力が 適用できるとする。 万有引力定数は G とし、 光速をc とする。 (1) 真円軌道で公転運動する宇宙船の速さ と、 公転周期 To を M, m, mo, r, R, G の内、 必要な ものを用いて簡潔に表せ。 (2) カプセルを捨てた後の楕円軌道における宇宙船の近日点での速さ v1 と v2をそれぞれ M, m, mo,r, R, G の内、 必要なものを用いて簡潔に表せ。 (3) カプセルを捨てた後の宇宙船の楕円運動における公転周期T を M,m,mo, r, R, G の内、必要 なものを用いて簡潔に表せ。

回答募集中 回答数: 0
物理 高校生

(2)で求めたエックスゼロと、(4)で求めるLは同じ座標ですか? 追加 (5)のグラフを見て同じでは無いことはわかったのですが、それならなぜセックスゼロで物体Aが静止できるのか分かりません。教えてください。

3 図のように、電荷Qを帯びた質量mの小さ な物体Aが水平面からの角度の斜面上にあり、 電荷Qを帯びた小さな物体Bが斜面の下に固定 されている。 物体Bの位置を原点とし、斜面 上方に向かってx軸をとる。 物体Aはx軸上を なめらかに動くことができる。 物体Aと物体B の間にはたらくクーロン力の比例定数をんとし, 重力加速度の大きさを」 とする。 また、運動す る電荷からの電磁波の放射と空気抵抗は無視できるものとする。 次の問いに答えよ。 (1) 物体Aの座標をx, 加速度をaとするとき, 物体 A の運動方程式を記せ。 (2) 物体Aが静止することのできる座標x を, k, Q, m, g, 0 を用いて表せ。 水平面 次に,物体Aを座標s (s<x) の位置に置いて、静かにはなした。その後の物体Aの 運動を考える。 (3) 座標sで物体 A のもつ力学的エネルギーEを, s, k, Q, m, g, f を用いて表せ。 ただし、重力による位置エネルギーの基準は原点0の高さとし, 物体Bによる電位 の基準は無限逮方とする。 x S x0 (4) 物体Aが原点から最も離れたときの座標L, E, k, Q, m, g, f を用いて 表せ。 S 物体B x (5)s が x に比べて非常に小さいとき,物体Aの座標xと時刻の関係を表すグラフ として,最もふさわしいものを次の解答群の中から選び記号で答えよ。 [解答群] xo min m # W x0 W S ol X x mm M W A x0 S S 0 x S 原点O 物体 AS なめらか な斜面 (広島2013)

回答募集中 回答数: 0