学年

教科

質問の種類

物理 高校生

250回目の最小値をとったときにHとBの距離はなぜLA+2ΔLになるのですか? 最小値が4Δlごとにあらわれるのが分かりません💦

<tttttt EXI 図2 一光線の空 リットが きいと 率力の れは子供 改 354 マイケルソン干渉計 Sを出た波長入の単色光が,Sから距離 Ls にある [兵庫県大 改] 347 図のように,光源 鏡 A LA 鏡B 半透鏡 H -22- ←Ls -LB- AL AL LD 検出器 D 半透鏡Hにより上方への反射光と右方への透過光 光源 S 2つに分けられる。 反射光は,Hから距離 LA に固 定された鏡Aで反射して同じ経路をもどり、一部が Hを透過してHから距離LD 離れた検出器Dに到達 する。一方, Sを出てHを右方へ透過した光は,鏡 Bで反射して同じ経路をもどり、一部がHで反射してDに到達する。 これら2つの光が 干渉する。 初めのHからBまでの距離はLB (LB> LA) で, Bは左右に動かすことができ る。Hの厚さは無視でき, 鏡および半透鏡において光の位相は変わらないものとする。 )Bを少しずつHに近づけるとDで検出される光の強さは単調に増加し, 4Lだけ動い たとき,最大となった。 逆に, Bを少しずつHから遠ざけると光の強さは単調に減少 し、初めの位置から4Lだけ動いたとき最小となった。 波長を4Lで表せ。 Bを初めの位置にもどし, 波長を入から少しずつ大きくしていく。 Dで検出される 光の強さは単調に増加し, +4のとき最大となった。 LB-LAを入と 4入で表せ。 (3) 次に, 光の波長を入にもどし, Bを初めの位置から動かして, Hからの距離がL』に 等しくなるまで少しずつ動かした。 この間のDで検出される光の強さを観測すると, 250 回最小値をとることがわかった。 このとき,(2)における入との比を求め [16 新潟大 改] よ。 ヒント 353(2)隣りあう2つのスリットを通る光の経路差= | (回折後の経路差)-(入射前の経路差)| 354 (3)250回目の最小値をとったときの,HとBの距離はLA +24Lであり、最小値は 44L ご とに現れる。

回答募集中 回答数: 0
物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0
物理 高校生

(4)からの解説お願いします。学校でもらった問題集で類似問題探したんですけど、似たようなものがなかったので答えは初めの問題から62543です。

ⅣV 図のように、真空中において点0を原点とするxy座標平面上の点A(a, 0)に電気量 +4Q(Q > 0), 点B (-a, 0)に電気量9Q の点電荷を固定した。 y軸上の点(0, α)を 点C.x軸上の正の領域で点0から十分にはなれた点を点D. クーロンの法則の比例定数をと する。 また, 重力の影響は考えないものとする。 C(0, a) -9Q + 4Q B(-a, 0) A(a, 0) D 次の各問いについて それぞれの解答群の中から最も適切なものを一つ選び, 解答欄の数字にマー しなさい。 (1)x軸上において電場が0となる点のx座標を求めよ。 16 16の解答群 1 ① ④ 3a (2)点Cにおける電場の成分の大きさを求めよ。 17 17 の解答群 ① √2 kQ 3a² 5/2 kQ 2a2 5√2 kQ 4a² 5kQ 2a 5a 3√2kQ 2a2 13/2kQ 2a2 (3) 電気量+q(q> 0)の点電荷Pを点Cから点Dまでゆっくり運ぶのに必要な仕事を求め よ。 18 18 | の解答群 /2kQg √2 kQq √2kQg ① a 3a 5a 3√2kQg 5/2 kQq 7/2 kQq 2a 2a 2a (4) 点Dで点電荷Pを静かにはなしたところ, 点電荷Pはx軸に沿ってx軸の負の向きに運動 し、x軸上の点Eで速さが0となった。 点Eのx座標を求めよ。 19 19 |の解答群 a a 2a a 5a a (5) 点電荷Pの質量をm とする。 点電荷Pが点Dから点Eまで運動する間の速さの最大値を 求めよ。 20 20 の解答群 [kQq 5 ma /2kQq ma [kQq 2ma /3kQq ma /kQq ma /5kQg ma

回答募集中 回答数: 0
物理 高校生

高校物理です。 大門10の(5)の解き方がわかりません。 至急おしえてください! 答えは6.9×10^-6らしいです。

3/3 !! (各2点×4=8点) (1)抵抗を流れる In(t) をを含む式で表わせ。 (2) コイルを流れる電流()をを含む式で表わせ。 IR IL Ic Vo R (3) コンデンサーを流れる電流 Ic(t)をを含む式で表わせ。 R L (4)電源を流れる電流を、I(t) = Asin(wt) + Bcom (wt) と表す とき、 A. B に相当する式を求めよ。 10 真空中を考え、図のように3本の平行で十分に長い直線状の導線 A,B,Cを一辺dの正三角 形の頂点に垂直に置く。 導線ABに紙面の表から裏向きに、導線には逆向きに、それ ぞれ、 Is. Is. Ic の電流を流す必要があれば真空の透磁率 μg を用いて、 次の問いに答え よ。 ただし、向きを答える場合は、図に示した16方位の方角で答えること。 (各2点×6=12点) (1) Aが導線Cの位置につくる磁界の強さを求 めよ。 (2) B C の位置につくる磁界の強さを求 めよ。 Olc 以下の間では Po= 4 × 10-7 [N/A2 d=1.0×10-1 [m] In = In = Ic = 2.0 [A] として考えよ。 (3) Aと Bが導線Cの位置につくる磁界の 強さは、 何 [A/m] か。 (4) 前間における磁界の向きを答えよ。 (5) か Cの長さ 5.0×10-1 [m] あたりの部分が受け る力の大きさは何 (6) 前間における力の向きを答えよ。 d 西山西 d B d 北北西 北北東 南南西 (-) Cos I IA. 2πF 2nd 2 2×3.14×1.0×10 3.15 0314/10009 180 514 TLE

回答募集中 回答数: 0