学年

教科

質問の種類

物理 高校生

(2)で、向心力をSsinθとして計算していますが、mgtanθが向心力として等速円運動していると考えて計算してもいいのでしょうか?教えてください🙏

例題1 円錐 右の図のように、軽い糸の端に質量mの小さなおも りをつけて振り子をつくり, おもりを水平面内で等速 円運動をさせる(このようなものを円錐振り子という)。 糸の長さをL,糸と鉛直線とのなす角を0として,次 の問いに答えよ。ただし,重力加速度の大きさをg, 円周率をとする。 (1) 糸がおもりを引く力の大きさSはいくらか。 (2) 等速円運動の周期Tはいくらか。 指針 して円の中心方向の運動方程式をつくる。 解 (1) 図のように,おもりにはたらく力を円の中心方向 (水平方向) と, それと垂 の2カ 直な鉛直方向に分解して考える。糸がおもりを引く力と重力 の鉛直方向の成分はつり合っているから, 鉛直上向きを正として Scost-mg=0 向心力としてはたらく力を考え,これに着目 ….... ① (2) 3mgとの合力は円の中心を向いており, おも りが等速円運動をするための向心力となっている。 この合力の大きさはこの水平方向の成分 Ssine に 等しい。 これより, 等速円運動の運動方程式は,円 運動の半径を , 角速度をωとして, mrw²=Ssine ...... ② また, r = Lsin0 となるので,これと式 ①, ② より よって, w= 答 (1)S= よって, S= w²== g Lcos したがって,T= mg cose mg coso 2π W (2) T=271 Lcose g n~/ L cos0 g g Lcose Š 0 Ssine m Scost m omg

未解決 回答数: 1
物理 高校生

(4)について質問です。 ベクトル図で考え、tanθ=R(ωC-1/(ωL))と逆にして書いたのですが、これは正解なのでしょうか? ωCV_0とV_0/ωLの大小が分からないので正解だろうと予想しましたが、 不安だったので質問しました。

138. 〈RLC 並列回路〉 10) 図のような, 交流電源, コイル, コンデンサー, 抵抗からなる 回路について考える。 交流電源の交流電圧の最大値を Vo〔V〕, 角 周波数をw [rad/s〕, コンデンサーの電気容量をC[F], コイルの 自己インダクタンスをL [H], 抵抗をR [Ω], 円周率をとする。 電流は図の矢印の向きを正とする。 また時刻 t〔s〕において交流 電源の電圧 V〔V〕はV=Vosinwt, 交流電源から流れる電流は I〔A〕であるとする。コイル, コンデンサー,抵抗に流れる電流 をそれぞれ IL 〔A〕, Ic〔A〕, IR〔A〕 とし, その最大値をそれぞれ ILo〔A〕, Ico〔A〕, Iko〔A〕 とす る。十分な時間が経過しているとして,次の問いに答えよ。 (1) 電流の最大値 Ito, Ico, Iro をそれぞれ Vo, w, C, L, R の中から必要なものを用いて表せ。 (2) 時刻 t において, 流れる電流I, Ic, In をそれぞれ Ito, Ico, IRo, w, tの中から必要なも のを用いて表せ。 (3) 電流 I を I, Ic. IR を用いて表せ。 (4) 0 [rad〕を電圧(Vの位相に対する電流の位相の遅れとして, I を Vo, w, C, L, R, t, Qを用いて表せ。また, tanθ を w, C, L, R を用いて表せ。 次の三角関数の公式を用いて もよい。 asinx-bcosx=√a²+busin (x-9), cos0= a √a² +6² [ 10 大阪教育大 〕 9 IL VIC L C b √a² + b² sing= VIR (5) 図の回路のうち, コイル, コンデンサー, 抵抗からなる並列回路のインピーダンス Z〔K〕 をw, C, L, R を用いて表せ。 (6) (5)のインピーダンスZが最大となるような角周波数 wo [rad/s] を求めよ。 [20 福井大

解決済み 回答数: 1
物理 高校生

万有引力の問題です。 (7)の解き方がわかりません。 答えは√3GM/2Rです。 どなたか教えてください🙏

第5問 解答欄注意 半径R, 質量Mの地球から 地球の中心から距離 3Rの円軌道 に質量mの人工衛星を2段階の操作で打ち上げる。 まず,地球 を1つの焦点とし,点 Pで地表に, 点Qで半径3Rの円軌道に接 する楕円軌道にのせ、 次に、点Qで円軌道に移行させる。点P, Qにおける人工衛星の速さをそれぞれ up, bQ, 万有引力定数をG, 円周率をπ,万有引力による位置エネルギーの基準を無限遠とす る。 v=- G M (1) 点Pにおける人工衛星の運動エネルギーをmup を用いて表せ。 1/2mv (2) 点Pにおける人工衛星の万有引力による位置エネルギーをR,M,m,Gを用いて表せ。 3.R (3) 点Pにおける人工衛星の面積速度を R, up を用いて表せ。 (4) 点Qにおける人工衛星の運動エネルギーをmv を用いて表せ。 5点Qにおける人工衛星の万有引力による位置エネルギーをR,M,m, G を用いて表せ。 6) 点Q における人工衛星の面積速度を R, vQ を用いて表せ。 (7) ( 7 up を R, M, G を用いて表せ。 て Po 8) 地球の中心からの距離 3R の円軌道上を運動する人工衛星の速さv3 をR,M,G を用いて 表せ。ただし,答えだけでなくその導出過程や考え方なども簡潔に記すこと。 (9) 点Pから点Qまで移動するのにかかる時間を R,M,G,π を用いて表せ。

解決済み 回答数: 1