学年

教科

質問の種類

物理 高校生

物理です至急お願いします、 教科書の問題を解いたのですが答えが見つからないので正しいか見てほしいです。

例題 8 ヤングの実験 2枚のついたてA, B を平行に立て, Aにはス リット So, B には狭い間隔 dでスリット S1 S2 が備えられている。 Bから距離Lはなして, A, Bに平行にスクリーンCを置く。 S の左側の 光源から、波長の単色光 (赤色) を送ると, C に明暗の縞模様が観察された。 S1, S2 の垂直 等分線とCとの交点をOとする。 So から S, 光源 S2 までの距離は等しく, L≫ d とする。 次の各問に答えよ。 S₁ L B (1) 点0から上向きに距離 x はなれた点をPとする。 S, S2 から点Pまでの光の経路差を, d, L, を用いて表せ。 ただし, L≫x とし, 0が十分に小さいとき, sin0≒tan が成り立つことを用 いよ。 (2)点から上向きに数えて1番目の明線と点0との間の距離を求めよ。 目 光 仮 ト 求 準 10 75 ① 指針 S, S2 から点Pまでの2本の光の経路は,L≫dなので,平行とみなし、経路差を考える。 2 この経路差が波長の整数倍のときに,2つの光は強めあう。 解 (1)S1, S2 から点Pまでの光の経 路は, L≫dであり, 平行とみなすこと ができる。 したがって, 図のように, 経 路差は dsin である。 0は十分に小さ いので, 近似式を用いると, L x dsin0≒dtan0=d ...1 P Sz 0 0 S₁I 経路差 dsin 0-m) (2)点から数えて1番目の明線は, S, S2 からの経路差が入となる位置にできる。 求める距離を x' とすると, 式 ① を用いて, L x'= L入 d 類題 8 ヤングの実験で, 間隔が0.50mmのスリットに単色光を入射させたところ, 1.5m はなれた スリットに平行なスクリーン上の中央付近に、間隔が1.8mmの干渉縞が観察された。この光の 波長を求めよ。 ③ 15 20 TRY 干渉縞のようすを考えよう 例題8において,次の (ア)~ (エ)に示すように実験条件を変えた場合, 点0から数えて1番目 この明線の位置は、0に近づくか, 0から遠ざかるか, それとも変わらないか。 理由とともに答 25 えよ。 (ア) スリットの間隔dを大きくした場合 A = L とざかる (イ)スリットからスクリーンまでの距離Lを大きくした場合 近づく (ウ)光源の単色光を赤色から青色のものに変えた場合→小さくなるか (エ) BC 間を屈折率n (1) の液体で満たした場合 202 第II章 波動 ・きょり→丈 入は小さくなる→ちがおく 4 スク

回答募集中 回答数: 0
物理 高校生

問3についてです。 容器の中の空気の圧力が回答をみると図35-3では下向きに図35-4では上向きになってたりしてる理由を教えてほしいです。

*第35問 次の文章を読み, 下の問い (問1~3)に答えよ。 (配点 12 18分 れ、底面を上にして静かに手を離すと, 図1のように, 円筒中の水面が外部の水 より少し下がった状態で,鉛直に静止した。 外部の大気圧をPo, 水の密度を 一端を閉じた質量M, 断面積Sの円筒を,内部に少し空気が残るように水中に入 力加速度の大きさを」とする。円筒は熱を通さず、円筒の厚さは無視できるもの する。また,円筒内部の空気は、常に水温と同じ温度であるとし,その質量は に比べて十分小さく無視できるものとする。 DISO OST 大気圧 Po 質量 M, 断面積 S 問2 水温を測定したところ15℃であり、円筒内の気柱の高さはだった。その状 態から,水温を43℃まで上げた。 このとき気柱の高さはの何倍になるか。 最も適当な数値を,次の①~⑥のうちから一つ選べ。ただし、外部の大気圧 はPo. 水の密度はpのままであるとし、水の蒸発は考えないものとする。 2 倍 ① 0.3 ② 0.9 ③ 1.1 ④ 1.5 ⑤ 2.2 ⑥ 2.9 問3次に,図2のように円筒を鉛直に保ったまま引き上げると,円筒内の水面は 外部の水面からんの高さまで上がった。 このとき,手が円筒を上向きに支えて いる力の大きさを表す式として正しいものを、下の①~⑥のうちから一つ選べ。 3 p 図 1 Po h 問1 円筒の内部の空気の圧力を表す式として正しいものを次の①~⑥のうち から一つ選べ。 1 第2章 熱と気体 ①Po- Mg S ②Po Mg ③Pos ④ PS - Mg 図 2 ⑤ PS PS + Mg 3 Mg-pShg ② Mg ① Mg + pShg ④ Mg + pShg + PoS ⑤ Mg + PS ⑥ MgpShg + PS

回答募集中 回答数: 0
物理 高校生

(5)のb 解答で最大変位の波形が図fのようになるとありますがなぜですか?※Eのところの説明の正弦曲線の式の理由も教えて欲しいです🙇‍♀️

78.〈正弦波の波形〉 標準問題 図1のように、x軸の正の向きに一定の速さで正弦波が進む。 この波の波長を入振幅 とする このとき,媒質の各点は単振動をする。 いま、時刻 t=0,媒質の各点につ いて図1のような変位が観測できたとして、 次の問いに答えよ。 (1) (a) 位置における媒質の振動の周期を答えよ。 3 位置 c における媒質の速度uと (b) 位置における媒質の変位」と時刻tの関係を図2に示せ。 大値をひとしてよい。 さぁで進むとき, ひと時刻の関係を図3に示せ。 ただし,媒質の速さの最 (2) 図1に示した波に対して振幅, 波長がともに2倍の正弦波がx軸の正の向きに一定の速 (a) 媒質の振動の周期は,図1の波の何倍か答えよ。 媒質の速さの最大値は,図1の波の何倍か答えよ。 (3) 図1は,媒質の変位をy軸へ移して、 縦波を横波のように表しているものとする。このと 時刻 t = 0 において, 図中の位置aからiのうち最も密な点をすべてあげよ ひ 次に、図4のように, 波長 入, 振幅Aの正弦波 (図4中の実線の波) がx軸の正の向きに一 定の速さで進むとともに, 同じ速さでx軸の負の向きに進む同じ波長で同じ振幅の正弦 波 (図4中の破線の波) がある場合を考える。 実線の波の進む速さと波形は図1の波と同じ である。ただし,図4の状態を時刻 t=0 とする。また、図中の位置aからiは等間隔にと られている。 ③ (4) (a) 時刻 t=0 における合成波を図4に示せ。 ※図中の位置からのうち、時における媒質の速さが最も大きな点をすべて 答えよ。ただし,すべての点で速さが0である場合は, 「すべてゼロ」と答えよ。 (a) 位置 dでの媒質の振動の周期は、 図1の波の何倍か答えよ。 位置dでの媒質の変位の最大値は,図1の波の振幅の何倍か答えよ。 (c) 位置gでの媒質の速さの最大値は,図1の波の媒質の速さの最大値の何倍か答えよ。 時刻 = 0 の波形 波の進む向き 変位 y abcde g h 位置 置 x 図1 変位 y 図3 図2 実線の波 破線の波 4 a d e 図 4 位置 X 香川大

回答募集中 回答数: 0
物理 高校生

問5相対速度の問題で、解答にある相対速度が表されてる図が何故そうなるのか教えて頂きたいです。 相対速度を考えるときの図の書き方も教えて頂きたいです。 回答よろしくお願いします🙇🏻‍♀️

物理 次に,AさんとBさんは、発射台が水平面に固定されていない場合の現象につ いて考察している。ただし、図3のとは正しくは描かれていない。 Aさん: 発射台が水平面上をなめらかに運動できるとき, 図3のように発射台から 見て水平方向から45°の方向に小球を打ち出すと, 小球が水平面に衝突す る直前の速度方向と水平面のなす角度が 45° とは異なるよ。 Bさん:小球を打ち出したときの反動で,発射台が動いてしまうのが原因だね。小 球が水平面に衝突する直前の速さをひとして考えてみよう。 打ち出した直後 落下する直前 小球 <45° 発射台 小球 水平面 水平面 問5 次の文章中の空欄 10 ものを,それぞれ直後の { 11 物理 に入れる式または語句として最も適当な } で囲んだ選択肢のうちから一つずつ選べ。 Aさん:Φ=60°になるとき,小球を打ち出した直後の,発射台に対する小球 の速さ”はどうなるだろう。 Bさん:発射台に対する小球の相対運動を考えると求められるよ。小球を打ち 出した後の台の速さをVとすると, v= 10 0 √2(V) ② √2V+ 2(+12/20) ③√√2 (V-v') ④ √2 (V+α) となるよ。 Aさん:一方で,発射台の質量が小球の質量より十分大きいときは ① 0°に近い値 11' 図 3 問4 小球を打ち出した後の発射台の速さはいくらか。 最も適当なものを,次の① ⑥のうちから一つ選べ。 ただし, 発射台の質量をM, 小球の質量をとす る。 9 mv'sin 45° mv'cos 45° mu'sino M M M mv'cos o M 2mv'sin 2mv'coso M M 11 ② 45°に近い値になるよね。 ③ 90°に近い値

回答募集中 回答数: 0
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0