学年

教科

質問の種類

物理 高校生

これの⑷の問題で、 問題文に有効数字を合わせたら答えは2桁になりますが、どういう時に3桁で表せばいいのですか? 問題文に合わせる時と和と差、積と商の計算方法で出た答えにするのかわかりません、、、 問題文と計算結果の桁数の有効数字の桁数が大きい方にするっていうことなんですか?... 続きを読む

を右向き きに速さ 発展例題 2 等加速度直線運動 斜面上の点から, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち, 下 降し始めて、 点0から 5.0m はなれた点Qを速さ 4.0m/s で斜面下向きに通過し, 点0にもどった。 この間, ボール 等加速度直線運動をしたとして, 斜面上向きを正とする。 (1)ボールの加速度を求めよ。 →発展問題 24 25 26 5.0m 6.0m/s ボールを投げてから,点Pに達するのは何s後か。 また, OP間の距離は何mか。 (3)ボールの速度と,投げてからの時間との関係を表すv-tグラフを描け。 (2) (4) ボールを投げてから、点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また、ボールはその間に何m移動したか。 ( 6) ■ 指針 時間が与えられていないので, 「ぴーぴ²=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0 となる。 v-tグラフ を描くには,速度と時間との関係を式で表す。 ■解説 (1) 点 0, Q における速度, OQ 間 の変位の値を「v2-vo²=2ax」に代入する。 (4.0)-6.02=2xqx5.0 α=-2.0m/s2 (2)点Pでは速度が0になるので,「v=vo + at」 から、 0=6.0-2.0×t t=3.0s 3.0s 後 OP間の距離は, 「v-vo2=2ax」 から, 02-6.02=2×(-2.0) xx x=9.0m 1/2a」からも求められる。) (3) 投げてからt[s] 後の速度v [m/s] は, v = 6.0-2.0t グラフは,図のようになる。 「v=votat」から, v [m/s]↑ 6.0 OP間の距離 PQ間の距離 O 1 2 3 4 5 16 t(s) - 4.0 - 6.0 (4) 「v=vo+at」 から, t=5.0s 5.0s 後 -4.0=6.0+(-2.0) xt ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ, 6.0×3.0 (5.0 -3.0)×4.0 + 2 2 =13.0m Point v-tグラフで,t軸よりも下の部分の 面積は、負の向きに進んだ距離を表す。 7m

回答募集中 回答数: 0
物理 高校生

背理法による証明 k2乗は整数であるから C の2乗は4の倍数なのに M 2乗+ N 2乗- m - n は整数であるから a 2乗+ b 2乗は4の倍数ではないがわからないので教えてください

例題 4 背理法による証明 第2章 集合と命題 ★★★★~ la, b, c は a2+b2=c2 を満たす自然数とする。 このとき, a, bの少なくとも一方は偶数であること 背理法を用いて示せ。 考え方 結論を否定して矛盾を導く 結論が成り立たないと仮定する。 (結論を否定する) ⇒ 「α,bの少なくとも一方は偶数」の否定は 「a, bがともに奇数」 a+b=c の両辺について, 4の倍数であるかどうかを調べる。 解答 a, b がともに奇数であると仮定する。 [類 岐阜聖徳学園大 ポイント ① 結論を否定 ② 右辺を調べる このとき,a2,2は奇数であるから,c=d'+62 は偶数である。 左辺を調べる ③ 矛盾を導く 練習 4 よって, cも偶数であるから, cは自然数kを用いてc=2k と表される。 ゆえに,c2=(2k)²=4k2となり,kは整数であるから,2は4の倍数である。 一方,奇数 α,bは自然数nを用いて,a=2m-1,b=2n-1 と表される。 このとき,a+b2=(2m-1)+(2n-1)²=4(m²+n-m-n) +2となり、 m²+m²-m-nは整数であるから, a +62は4の倍数ではない。 ゆえに,a+b2=c2において,右辺は4の倍数であるが, 左辺は4の倍数でな から, 矛盾する。 したがって, a, bの少なくとも一方は偶数である。 [終] (1) 正の整数xが3の倍数ではないとき, x2を3で割った余りは1であることを示 (2)x,y,z は x2+y'=z2 を満たす正の整数とする。このとき,x,yの少なく 3の倍数であることを, 背理法を用いて示せ。 〔類

未解決 回答数: 1