学年

教科

質問の種類

物理 高校生

2枚目の写真が自分の考え方なんですけどなんで3倍振動と5倍振動にならないんですか?教えてください🙇

引き出す てて音を聞いた。 すごとにBで開 ・振動数は何Hz その後、C 聞こえる音はそ なお、クインケ 16 東海 さがある。た 弦から出る 00Hzのおんさ なりが生じた。 じなかった。 -171 図のように,円筒形のガラス管を空気中で鉛直に立て,その中に 水を入れる。 ガラス管の底と水だめはゴム管によりつながれており, ×180 水だめを上下することにより管内の水位を調整できる。いま,管口 近くにスピーカーを置き, 振動数が450Hzの音を出し続ける。 この状態で管内の水面を管口近くまで上げ, そこから水面を徐々 最も大きく聞こえ, 距離が 55.0cmのときに再び音が最も大きく聞 に下げていくと, 管口から水面までの距離が170cmのときに音が こえた。このとき,スピーカーから出ている音の波長はアcm, 音の速さは m/sである。 ガラス 2 スピーカー 水だめ cmの位置である。ま ここで、管口から水面までの距離を55.0cmに固定する。このと き、管内の空気の密度が時間的に変化しないのは管口から [18 千葉工大] 182 た水面の位置をそのままにして、スピーカーから出る音の振動数を450Hzから徐々に 大きくすると、次に音が最も大きく聞こえるのは,振動数が エHz のときである。 ただし、開口端補正は音の振動数によらず一定とする。 × 189 気柱の振動■図の太さ一様な管は,ピ ストンBを動かして,管口AからピストンBまで の長さを調節できるようになっている。 音源から振動数の音波を出しながら,Bを動かしてをしにしたらよく共鳴した。 続いてBをゆっくり動かしたら,しがのとき再びよく共鳴した。 開口端補正は無 視する。 (1) 音波の波長を, l を用いて表せ。 (2), 音波の振動数をfから次第に大きくしたら, 振動数がf' のときまた よく共鳴した。 4 人をする f'はfの何倍か。 ■さを,m,s 数は変わら 最大) 1 ヒント 185 2 つの経路の経路差は,引き出した距離の2倍ずつ長くなっていく。 186 弦を長くすると, 基本振動の波長が長くなり、 振動数が小さくなる。 187 (4) 振動数が (3)の結果と等しいことを利用する。 188 (ウ) 空気の密度が時間的に変化しないのは、定在波の腹の位置である。 189(2) 気柱の長さが - 波長の何個分かを考えるとよい。 -182

回答募集中 回答数: 0
物理 高校生

大阪市立大学 物理 2019 問5ですが、万有引力による位置エネルギーは考えなくてよいのですか? また慣性力を使っているので、慣性力のした仕事なども考える必要があると思ったのですがどういうことですか?

-k) 大-理系前期 のをすべて求 00/90 P, 辺BCを あるとき,P OLD 泉 l を考える. A M , β として, こで囲まれた 大阪市立大理系前期 物理 (2科目 150分) 第 1 問 (35点) 2019年度 物理 21 図1のように、地球の中心をEとし, 球形のカプセルの中心Oが,Eを中心とした等速 円運動を行っている.ここで, カプセルの重心はOと一致している. EO間の距離はであ が中心に集まった場合と等しくなることを用いて, 以下の問いに答えよ. る。 地球の質量をM,万有引力定数をGとし, 地球がおよぼす万有引力は、地球の全質量 問1 カプセルの中心の速さ, 等速円運動の周期, および角速度を求めよ. 図2のように,EとO を結ぶ直線を軸とし,Oを原点とする.EからO に向かう向き をェ軸の正の向きとする. カプセルの中に,質量の無視できる長さ 21 の細い円筒を設置し た。ここで、円筒の端はæ= -l およびæ=lであり, 円筒の中心軸は,常に軸と一致さ せている. 質量mの小球を、円筒内のx=xo (No > 0) に静かに置いたところ,軸の正の向きに動 き始めた.ここで,小球は円筒の中を, x軸にそって, なめらかに動くことができる.小球 の質量はカプセルの質量に比べて十分小さく,また, カプセルと小球間に働く万有引力は無 視できるとして、以下の問いに答えよ. 間 2小球が位置π (20≦x≦り)にあるとき、小球に働く万有引力のェ成分を求めよ。た だし,1と考え,|a| ≪1 に対する近似式 =(1+α) = 1 - na を用 いよ. (1+a)^ 問3 円筒とともに回転する観測者からみたとき, 位置にある小球に働く力の成分F を の関数として求めよ。 ただし、 問2の結果を用いよ。 また, 解答用紙のグラフ に,Fをæの関数として描け.

回答募集中 回答数: 0
物理 高校生

(3)でβ<<1とできる理由を教えてください

解答 (1) 図より 例題3-17 図のように,頂角 α の直角プリズム ABCが 空気(屈折率を1.0 とす る) 中に置かれている いま,空気中の波長が入 の単色光平面波をプリズ ムのAB面に垂直な方 向から入射させたとこ ろ, プリズムを透過した 光波は,プリズムの下方DE間を通って直進した同じ単色光平面波と。 の角度をなして重なった。 このとき形成される干渉じまをFG面にスク リーンを置いて観測する。 次の各問いに答えよ。 プリズムを透過した光波のプリズム AC面における屈折角β を求めよ。 プリズムのこの光波に対する屈折率 n を求めよ。 頂角αが非常に小さいとしたとき, δをnとαを用いて表せ。 FG面はプリズム下方 DE を通って直進した光波の進行方向に対して 垂直とし、この面内に図のようにx軸をとる。 プリズムを透過した光 波の波面はその進行方向と垂直であるから, x=0の位置を通るこの光 波の波面は破線で示したようになる。 このとき FG面上に形成される干 渉じまの隣り合う明線の間隔 4x を求めよ。 屈折角 β=α+8 (2) 屈折の法則より n= BA95HX- sin B sin (a + 8) sina sina (3) α<1,β=α+ 8≪ 1 だから ( 2 ) の結果より n= a+d a 8= =(n-1)α(p.227 発展 プリズムで屈折した光の干渉 A TB BDC E (18 α d 8 C F x=0 G 249 (北海道大) 8

回答募集中 回答数: 0