学年

教科

質問の種類

物理 高校生

2番の問題がわかりません。左上には独立な試行の利用とありますが、この問題は本当に独立してますか?三日目に出会えるかは二日目によって決まりますよね?

232 独立試行の利用 題 大学には4つの食堂があり、 AとBの2人は、それぞれ毎日正午に、 品とは異なる自の食文はうちの会を無作為に選んで昼食を食べること にしている。 1日目に2人は別々の食堂で食事をしたとして、次の職率を (1) 2日目に会える確率 (2) 5日目に、初めて2人が食堂で会える確率 ARES Focus 単 考え方 食堂をX. Y, Z. Uとし、1日目にAX. BY の食堂を利用したとすると、2日目 食堂の選び方は、次の通りになる。 KYYYZZzUUU A X食堂以外の3つの食堂 YKZUKZUXZU Y食堂以外の3つの食堂 B 1* (②) *** cmd 2 いろいろな試行と確率 1日目に利用した食堂 2日目に会える場合 2日目に2人が会えるのは,1日目にそれぞれが利用した食堂以外の2箇所である。 (1) A が2日目に利用する食堂の選び方は3通り Bが2日目に利用する食堂の選び方も3通り より 2人の2日目に利用する食堂の選び方は、 3×3=9 (通り) 2人が2日目に会えるのは、 1日目にそれぞれが利 用した食堂以外の2つから同じ食堂を選んだときであ るから, その選び方は、 2 よって、2日目に会える確率は, (2) × ² - 6561 X- 9 (2) 2日目に会えない確率は, (1) の余事象の確率より、 1-1/---/7/20 99 686 2 であり 2日目から4日目まで会えず、 5日目に会える から 求める確率は、 (一橋大改) 1日目の食堂以外の 残りの3つから選ぶ、 |積の法則 A X-Z B Y → Z 1日目 2日目 AX → U BY →U 表などを利用して条件を満たす試行の確率を求める 2日目 3日目 4日目 409 「 ・ (1) 2日目にも会える確率 (2) 2日目と4日目は会えず, 5日目に2人が食堂で会える確率 Als B ↓ 5日目A 例題232 において、 1日目に2人が同じ食堂で食事をした場合、次の確率を求め 232より 第 7 章

回答募集中 回答数: 0
物理 高校生

数学a青チャート16の問題です 解答のやり方で全部網羅できるものなんでしょうか イメージが掴みにくくて困ってます 宜しくお願いします!

名を書い るか。 基本6 4, 5; 5) 求めれば る際は、 5 -3 -4 内の数字 並べない という。 1③の E き換え 重要 例題16 塗り分けの問題 (1) ... 積の法則 ある領域が,右の図のように6つの区画に分けられている。 境界 を接している区画は異なる色で塗ることにして, 赤・青・黄・白の 4色以内で領域を塗り分ける方法は何通りあるか。 解答 IC→A→B→D→E→F の順に塗る。 C→A→Bの塗り方は八 P3=24(通り) ( この塗り方に対し, D, E, F の 塗り方は2通りずつある。 よって, 塗り分ける方法は全部 で 24×2×2×2=192 (通り) C→A→B→D→E→F 指針 塗り分けの問題では,まず 特別な領域 (多くの領域と隣り合う 同色が可能) に着目するとよい。この問題では,最も多くの領域と隣り合うCDでもよい) に着目し C→A→B→D→E→F の順に塗っていくことを考える。 3.Cの色を除く 2.CとAの色を除く 2. CとBの色を除く の CとDの色を除く 色を除く 4 × 3 × 2 ×2×2×2 : 2…DとE それぞれ何通りか。 基本7 6×4=24 (通り) よって、4色すべてを用いる塗り分け方は {1}{1}{3} で塗り分ける。 B D 青く DE 青 注意 上の解答では,積の法則を使って解いたが,右のように樹形図 白く を利用してもよい。 なお, 右の樹形図は, Cが赤, A 青, B が黄で塗られているときのものである。 練習 右の図の A, B, C, D, E 各領域を色分けしたい。 隣り合っ (3) 16 た領域には異なる色を用いて塗り分けるとき, 塗り分け方は (2) 3色で塗り分ける。 A 3 A, B, D E の4つの領域 と隣り合うCから塗り始 める。 F 白く E 検討 4色すべてを用いる場合の塗り分け方 上の例題では, 「4色以内」 で領域を塗り分ける方法を考えたが,「4色すべてを用いて」 塗り分け る方法を考えてみよう。 この領域を塗り分けるには、最低でも3色が必要であるから (4色すべてを用いる塗り分け方) = (4色以内の塗り分け方) - (3色を用いる塗り分け方 ) により求められる。ここで, 3色で塗り分ける方法の数を調べると F 赤 ・白 赤 黄 RAJ [C, F] → [A, D]→[B, E] ([ ] は同じ色で塗る領域) の順に塗る方法は 3P3=6(通り) 4色から3色を選ぶ(=使わない1色を選ぶ) 方法は4通り ゆえに 192-24=168 (通り) 赤 黄 赤 A (2 青 C 319 D B 4 E 000 11 1章 3 順 列

未解決 回答数: 1
物理 高校生

?のところがなぜそのような運動方程式がたてられるのか教えていただけないでしょうか。

第23章原子と原子核 147 基本例題 90 放射性崩壊 > 165,166 Po は安定な原子核Pbになるまで一連の放射性系列に従って崩壊する。 Po - a崩壊 0 B崩壊 ② B崩壊 ③ Pb Bi → Po → Pb (1)Po の原子核に含まれる陽子数と中性子数を求めよ。 (2) 0のPB, 2の Bi の原子番号と質量数をそれぞれ求めよ。 (4)Po がPbになるまでにα崩壊, β崩壊をそれぞれ何回行うか。 (静止したPO から放出されたα粒子の運動エネルギーK。と, @のPbの運動エネルギーKeの比 K。:K。 を求めよ。 (3) 3の Po の同位体を上記の中から選べ。 α崩壊はZ→-2, A→-4。 B崩壊はZ→+1, A→±0。 (5) 分裂の際, 運動量が保存することから,速さの比 Da: D が求められる。質量比=質量数の比 圏(1)陽子数=原子番号 Z=84 中性子数=A(買量数)-Z=218-84=134 (2) α 崩壊は Z→-2, A→-4 なので 0Z=84-2=82 A=218-4=214 B崩壊は Z→+1, A→±0 なので 2 Z=82+1=83 A=214±0=214 (3) 同位体とは原子番号Zが同じ(元素記号も同じ)で質量 数Aが異なる原子核のこと。したがって Po (4) それぞれa回, B回とおくと A→218-4a=206 α=3回 Z→84-2a+B=82 B=4回 (5) α粒子は He, ①の PbはPbなので、 Ma:mpo=4:214=2:107 分裂の前後で運動量保存より Ve= 2 0=maVa-MpoUFo Va: Un三mPs:Ma Ka:K= -MPOUP6 2 MaVa =mam:mpoMa=mpo :ma=107: 2

解決済み 回答数: 1