学年

教科

質問の種類

物理 高校生

高校物理の万有引力の問題です。 (6)と(7)が分からないので教えてください

問2 万有引力の典型問題 頻出かつ大事な考え方が詰まっているのでしっかりとできるようにしよう。 地上の1点から鉛直上方へ質量mの小物体を打ち上げる。 地球は半径R、 質量Mの一様な球で、物体は地球 から万有引力の法則にしたがう力を受けるものとする。 図を参照して、以下の問いに答えよ。 ただし、 地 上での重力加速度の大きさを」とする。 また、 地球の自転および、 公転は無視するものとする。 (1)地上での重力加速度の大きさ」を万有引力定数G、および、R、Mを用いて表せ。 以下の問いでは、Gを用いずに答えよ。 (2) 物体の速度が地球の中心から2Rの距離にある点Aで0になるためには、初速度の大きさ”をどれだけに すればよいか。 物体の速度が点Aで0になった瞬間、 物体に大きさがでOAに垂直に方向の速度を与える。 (3) 物体が地球の中心を中心とする等速円運動をするためにはひをいくらにすればよいか。 実際には、点Aで物体に与える速さが (3) で求めた値からずれてしまい、 物体の軌道は、 地球を1つの焦点 とし、 ABを長軸とする楕円となった。 (4)点Bにおける物体の速さをを用いて表せ。 ただし、点Bでの地球の中心からの距離は6Rである。 (5) 物体がABを長軸とする楕円軌道を描くためには、 をどれだけにすればよいか。 (6)(3)の結果を用いて、 ケプラーの第3法則の比例定数kを求めよ。 (7)ABを長軸とする楕円運動の周期を求めよ。 m M A 2R 6R B

回答募集中 回答数: 0
物理 高校生

問題(エ)で2倍になる理由がわかりません。点Pは初めて極大になるから(L1-L2)=mλから一倍になるのではないのでしょうか?説明お願いします。

問5 次の文章中の空欄 物理 エ に入れる語と数値の組合せとして最 も適当なものを後の①~⑥のうちから一つ選べ。 6 図6のように、振幅, 波長の等しい音を同位相で発している小さいスピー カー A, B がある。 Bの位置を通り, A, B を結ぶ直線に対して垂直な直線 上で, Bから離れる向きにゆっくりと進みながら音の大きさを観測した。 た だし,各スピーカーからの音の大きさは距離によって変化しないものとし, 反射音などはないものとする。 また, A, B からの音が強め合うときに,観 測される音は極大になるものとする。 A P 図 6 A Bの位置から進むと, 点Pではじめて音の大きさが極大となり,さらに 進むと,点Qで2回目に音の大きさが極大となったが,その後, 進み続け ても音の大きさは極大にならなかった。 この間, 音を観測する点でのAか らの距離とBからの距離の差の大きさは, Bから離れるにしたがって ウ なる。また、点PでのAからの距離とBからの距離の差の大きさ は, A, B が発する音の波長の I 倍である。なお, 図6 中の BP, BQ の長さは正しいとは限らない。 610 ウ H ① 小さく 1 小さく 2 小さく 3 大きく 1 (5 大きく 2 (6 大きく. 3 -7- ばれた図形の面 40.

回答募集中 回答数: 0
物理 高校生

最後の問題で力学的エネルギー保存の式が0以上としているのは何故ですか?

6 いろいろな運動 軌道 地球 する。 例題 50 地球の質量を M, 半径を R, 万有引力定数をGとする。 (1)地表すれすれに円軌道を描いて飛ぶ人工衛星の速さ(これを 第1宇宙速度という) と周期 T を求めよ。 (2)地表面における重力加速度gを用いて表せ。 (3)地表面から人工衛星を打ち出し,地球から無限遠方に到達させ たい。 打ち出す速度はv (これを第2宇宙速度という)以上でな ければならない。ひ を求めよ。 遠心力 (1)人工衛星の質量を とする。 (万有引力)=(遠心力) より GmM R2 心力 V₁ m R = m- R GM . 01= R T = 21- W = 2 (n=4) GmM R2 2лR R T= 2πR V₁ GM (2)(地表面での重力)=(遠心力) Vi mg = m- . v=gR R (3)打ち出した速さを v, 無限遠方での速さをu とおく。無限遠方での万有引力による位置エネ ルギーは0だから力学的エネルギー保存則より 万引力による位置エネルギ mo mv² +(-6)= mu² -mu20 R (打ち出した瞬間) ( 無限遠方) これを解いて≧ 2GM このとき R 万有引力による。 ココが 2GM(=√2vs) . 02= R ポイント) 位置エネルギーの VA m M ME -G(RW) [人工衛星を無限遠方に到達させるための条件] (運動エネルギー) + (万有引力による位置エネルギー) -18

解決済み 回答数: 1