学年

教科

質問の種類

物理 高校生

ダイオードと豆電球の問題なのですが、Ⅲで答えがそのようになる理由がわからないので説明して頂きたいです。よろしくお願い致します。

第2問 ダイオードは,順方向に電圧を加えると, 流れる電流が電圧とともに急激に増大する特性をもつ。電球は,電圧 の上昇とともに熱としてエネルギーが失われるために、電圧とともに電流の上昇が徐々にゆるやかになる。電流と 電圧の特性が図2-1の曲線で表されるダイオード1個 (D)と、電流と電圧の特性が図2-1の曲線bで表され る特性の等しい電球 2個 (L, Lg)を, 図2-2のように起電力 V で内部抵抗が無視できる直流電源と接続した。 直流電源の電極側の点Bは接地した。 以下で、ダイオード、電球の抵抗値とは,それらの両端の電圧を,それら に流れている電流で割ったものとして定義する. I 図2-1に示す特性のダイオードと電球について以下の問いに答えよ。 (1) ダイオードの両端の電圧が0.70Vのときのダイオードの抵抗値はいくらか、 図2-1のグラフから読み 取った値を使って有効数字2桁で求めよ. (2)電圧が上昇するにつれて,ダイオードの抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない (3)電球の両端の電圧が0.30Vのときの電球の抵抗値はいくらか。 図2-1のグラフから読み取った値を 使って有効数字2桁で求めよ. (4) 電圧が上昇するにつれて、 電球の抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない -4- 九州工改題) 電流 [A] 3.0 2.0 1.0 Dale A. 0 1.0 0 0.5 電圧[V] 図2-1 直流電源 V [V] B L1 L2 図 2-2 -5- b 1.5 2.0 A 09 1124 D 076

回答募集中 回答数: 0
物理 高校生

この質問に答えて!

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

未解決 回答数: 0
物理 高校生

(2)の最初の式で大気圧の存在を考えていないのは問題文のどの表現によるものですか?

例題2-6 第2章 気体分子の運動 151 熱気球 解答 熱を伝えない材料で作った気球がある。 気球は,内部の圧力と外部の圧 力が等しくなるように、抵抗なく膨らんだり、縮んだりすることができる。 また,気球内には加熱用のヒーターが取りつけてある。この気球にヘリウ ムガスをm 〔kg〕 だけ入れて密閉する。 はじめ,ヘリウムガスの温度は To [K] で, 気球の体積は Vo〔m〕 であった。 気球自身の質量とヒーターの質量の和を2m 〔kg〕 とし, 大気圧を Po 〔Pa], 大気の密度を po〔kg/m3], 重力加速度の大きさをg〔m/s2] と する。 次の問いに答えよ。 (1) はじめの状態で気球にはたらく浮力の大きさ F。 〔N〕 を求めよ。 (2) ヒーターでヘリウムガスをゆっくりと加熱したところ, 気球が空中に 浮かんだ。 このときのヘリウムガスの温度T] [K] と気球の体積 V] [m] を求めよ。 ETS (1) 浮力の大きさは、 同体積の大気にはたらく重力の大きさと等しい。 (p.68) Fo= poVog 〔N〕 (2) 気球およびヒーターにはたらく重力 2mg 〔N〕 と気球内のヘリウムガスにはたらく重 力mg 〔N〕 と浮力 po Vig 〔N〕 がつり合う。 2mg+mg = po Vig 3m Po V₁₁ = (m³] この間のヘリウムガスの圧力は一定なので, シャルルの法則が成り立つ。 Vo_V1 To T₁ T₁ -To= Vo =V₁T=3m To (K) 00Vo (S)

未解決 回答数: 1
物理 高校生

(ロ)と(ハ)についてなんですけど、 (ロ)の熱力学第1法則の右辺の2RΔTの「2」って何を表しているのですか? (ハ)では15RnΔTだけではだめで、なぜ3/2×2RnΔTと15RnΔTのふたつが必要なのかがわかりません

4. 以下の設問の解答を所定の解答欄に記入せよ。 解答中に分数が現れる場合は既約 分数で答えよ。 なお, 導出過程は示さなくてよい。 熱を通さない断熱材でできた内側の断面積Sのシリンダー容器 (以後、容器と 呼ぶ) がある。 気体定数を R, 重力加速度の大きさをgとする。 (日) (A) 図1のように容器を鉛直方向に固定し,熱を通す透熱材(熱をよく通す素材) でできた熱容量の無視できる質量 Mのピストンを容器内側の中央に設置して, Mのピストンを容器内側の中央に設置して、 ピストンの上側と下側にそれぞれ1 molずつ (合わせて2mol) の単原子分子の 理想気体を入れた。 ピストンで密封された上側と下側の理想気体の圧力、 体積 . 温度はともに等しく,その圧力をP体積をVo温度をTする。この状態 を状態1とする。 平常 左 次に状態で容器の中央に設置されていたピストンの固定を外すと、ピストン は鉛直下方にゆっくりと距離αだけ移動して静止した (図2)。 この過程におい て、ピストンで仕切られた理想気体は常に平衡状態に達しており、 ピストン上側 の理想気体の圧力はP 体積はV1で,ピストン下側の理想気体の圧力はP2 積はVであった。 この状態を状態2とする。 なお、ピストンと容器の間に摩擦 であった。 力はなく、ピストンは鉛直方向になめらかに動くことができる。 また、ピストン と容器のあいだに隙間はなく,ピストンで仕切られた理想気体は反対側に漏れ出 ることはないものとする。 平

未解決 回答数: 1