学年

教科

質問の種類

物理 高校生

問題の問2について質問なのですが、 明線条件、経路差Δ=2(L2-L1)=mλより 2(L2-L1)がλの整数倍になればいいから 2(L2-L1)=2L2-2L1より、L2が1/2倍、すなわちL2=ΔL=(1/2)Nと表せるのは分かるのですが、 なぜ、「(1/2)Nλ」言い... 続きを読む

問1 20 M で反射される光と M2 で反射される光が干渉 して明るくなったり暗くなったりする。 光源から Mまで, およびMから0までについては,2つの 反射光の経路に違いはなく,それぞれの光が MM1 間,MM2 間を往復することによって生じる経路差 によって干渉が生じる。 この経路差を⊿とすると, 初めの状態でL, <L2 であることに注意して 44=2(L₂-L₁) SMT > また、反射の際の位相変化について考えると, M での反射光は, M, M1 での反射の際に、M2 で の反射光は M2, M での反射の際に、ともにそれぞ れ位相がずれるので,これらは相殺されて干渉 条件に変化はない。よって,干渉によって明るくな る条件は,経路差が波長の整数倍であればよいので 04=2(L₂-L₁)=mλ 4080>&: 21 ② 1 問2 一 経路差 4 の式からわかるように MM2 間の距離 L2 が入/2 だけ長くなると、 経路差⊿ が波長だけ 長くなって次に明るくなる。 したがって, N回目 に明るくなるまでに MM2 間の距離が⊿Lだけ長く なったとき PARTITA λ1 4L=N× |= 2 2 問3 20 Nλ

回答募集中 回答数: 0
物理 高校生

2番のグラフどうやって書いてるのか教えてください

単振動は,円周上を 回る点と対応させる とわかりやすいね。 (→下の「参考」) 3 正弦波の発生 波源が単 振動をする場合,図5に示す ような波が発生する。 ばいしつ 波源の単振動は周囲の媒質 に伝わり, 各点は波源よりも 遅れて単振動を始める。 その 振幅と周期は,波源の単振動 の振幅と周期に等しい。 つら 振動する媒質の各点を連ね はい た線を波形といい, 同図の wave form ような波形 (平らでない部分) せいげんは をもつ波を正弦波 という。 sinusoidal wave このように, 単振動している 波源からは正弦波が生じる。 P₁ P₁ 図5をもとにして, 時刻 1/27における波 形のグラフをかけ。 P₂ PPPP6P7P8 問2 図5 正弦波の発生 水平に張ったひも の端P を周期Tの単振動と同様に振ると きの波形を 時刻0から8分の1周期ごと に表している。 図の波形 (平らでない部分) ぱいぱんきょくせん のような曲線を正弦曲線という。 一定の速さで円周上を進む とうそくえんうんどう 運動を等速円運動という。 等速円運動と単振動 coloc 78 Loloo 時刻 0 単振動 18 ²T calco T ○ T T G l fellel feelle feelle feeeee fullle Po P₁ P2 P3 P4 P5 P P HIN WITH P 14 TM 5 15 10時間 (周期) T〔s] 波の V= 経 となる。f=1 波の要素 20 c波の表し 波の要素 波形の最も高レ 低い所を谷と 深さ trough しんぶく 振幅に一致す かん amplitude あう山と山の間 ink ニメーション 分の長さ(<) 山や谷が進む速 v=fi [m/s] 波の速さ 振動数 (fr f [Hz] 正弦波 2波のグラフ y-x図という。 る, 時間 t と媒質 (a 問3 時刻 0 変位 y[m〕 プ y[m〕4 0 y [m〕

回答募集中 回答数: 0