学年

教科

質問の種類

物理 高校生

物理重要問題集2024 大問71番の(3)なのですが、シャルルの法則は、初期状態と状態2で一定ではないのですか。

必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 熱効率を求めよう。 図1のように大気中で鉛直に 立てられている底面積S〔m²〕 の円柱形のシリン ダーに質量 Mo〔kg〕のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho〔m〕からん 〔m〕 までである。 重力加速度の大き さを g〔m/s2] とする。 物体 M [kg] ピストン Mo〔kg]- h [m] ho[m] 初期状態 単原子分子 理想気体 状態 2 図1 初期状態は,気体の温度が外部の温度と同じ To [K], 気体の圧力』が大気圧と同じPo〔Pa〕, ピストンの高さがん。 〔m〕である。まず、ピ ストンの上に質量 M[kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し,高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し,高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり、この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 [Pa] (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 (3)状態2のシリンダー内の気体の温度を求めよ。 (4) 状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのV図を図2にかけ。 (6) このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 0 V[m³] 図2 (8)M=2Mo, Mo= PoS =2h の場合の熱効率の値を求めよ。 [12 弘前大〕

回答募集中 回答数: 0
物理 高校生

Cはなんで浮くんですか? 球皮内の質量が減るとかですか?

AP APo P₁ = Po= RT RTo となる。これらの式より, 球皮内の気体の密度はpi = To と 表せる。 したがって, 球皮内の気体が受ける重力は P.Vg=poVgとなる。一方,Cの球皮内の気体は温度が上 がっても体積は一定であるため、浮力の大きさはF=poVg のま ま変化しない。 以上より, C が浮上する直前で球皮内の気体の温 度がT=Tのときに成り立つ力のつり合い式は, Tc poVg=p.Vg+Mg Po となる。 これより, Tc=- PV PV-M -To: 1.15.2000 1.15・2000-230 ・300≒333K 21 の答② 問6 気球Aについては, 球皮内の気体の質量が一定で,受ける重 力は一定である。また, 体積が一定であるため温度が上がっても 浮力は一定であり, 浮上することはない。 気球Bについては,気球Aと同様に球皮内の気体の質量が一 定で,受ける重力は一定 (po Vg) である。 一方, 問2で考察したよ うに,温度が上がれば体積が増加し, 浮力は大きくなる。 上昇後 の温度がTのときの体積をV, とすれば, 球皮内の気体について のボイルシャルルの法則より, P.V_PoVB となり,VB= To TO が得られる。このとき,受ける浮力はPV=Pomeg IV To なる。したがって, B. が浮上する直前の球皮内の気体の温度を T=TB として,このときに成り立つ力のつり合い式は, PoVBg=poVg+Mg TB Po To -Vg=poVg+Mg となり,これより, TB= =PoV+M POV -To=- 1.15・2000+ 230 1.15.2000 ・300=330 K 24 DVA となり,TB<Tcであることがわかる。 したがって, 気球Bのほ うが気球Cより先に浮上する。 以上より, Bが浮上して, 次にCが浮上し, Aは浮上しない。 22の答⑥ 第4問 コンデンサー 問1. 直流電源の起電力をVとする。 スイッチ1を閉じて十分に 時間が経過したとき, コンデンサーには電流が流れず0となるか ら、抵抗にかかる電圧も0となる。 このとき, キルヒホッフの第 2法則より, 電源の起電力とコンデンサーにかかる電圧が等しく

回答募集中 回答数: 0
物理 高校生

Cはなんで浮くんですか? 球皮内の質量が減るとかですか?

AP APo P₁ = Po= RT RTo となる。これらの式より, 球皮内の気体の密度はpi = To と 表せる。 したがって, 球皮内の気体が受ける重力は P.Vg=poVgとなる。一方,Cの球皮内の気体は温度が上 がっても体積は一定であるため、浮力の大きさはF=poVg のま ま変化しない。 以上より, C が浮上する直前で球皮内の気体の温 度がT=Tのときに成り立つ力のつり合い式は, Tc poVg=p.Vg+Mg Po となる。 これより, Tc=- PV PV-M -To: 1.15.2000 1.15・2000-230 ・300≒333K 21 の答② 問6 気球Aについては, 球皮内の気体の質量が一定で,受ける重 力は一定である。また, 体積が一定であるため温度が上がっても 浮力は一定であり, 浮上することはない。 気球Bについては,気球Aと同様に球皮内の気体の質量が一 定で,受ける重力は一定 (po Vg) である。 一方, 問2で考察したよ うに,温度が上がれば体積が増加し, 浮力は大きくなる。 上昇後 の温度がTのときの体積をV, とすれば, 球皮内の気体について のボイルシャルルの法則より, P.V_PoVB となり,VB= To TO が得られる。このとき,受ける浮力はPV=Pomeg IV To なる。したがって, B. が浮上する直前の球皮内の気体の温度を T=TB として,このときに成り立つ力のつり合い式は, PoVBg=poVg+Mg TB Po To -Vg=poVg+Mg となり,これより, TB= =PoV+M POV -To=- 1.15・2000+ 230 1.15.2000 ・300=330 K 24 DVA となり,TB<Tcであることがわかる。 したがって, 気球Bのほ うが気球Cより先に浮上する。 以上より, Bが浮上して, 次にCが浮上し, Aは浮上しない。 22の答⑥ 第4問 コンデンサー 問1. 直流電源の起電力をVとする。 スイッチ1を閉じて十分に 時間が経過したとき, コンデンサーには電流が流れず0となるか ら、抵抗にかかる電圧も0となる。 このとき, キルヒホッフの第 2法則より, 電源の起電力とコンデンサーにかかる電圧が等しく

回答募集中 回答数: 0
物理 高校生

(2)どうしてma=μ’mg-kxになるのですか? ma=kx-μ’mgではダメなのですか?

実戦 基礎問 31 粗い水平面上の単振動 図のように、摩擦のある水平な床の上に質量m の小物体Aを置き, 自然長Lの軽いばねの一端を取 り付ける。 ばねの他端はばねが水平となるように壁 平右向きに軸をとる。 小物体Aを位置 x=xo (0<x<L) で静かに た。 小物体Aはx軸負の向きに動き出し, Aを放した時刻を0とすると、 に固定する。 また, ばねが自然長のときの小物体Aの位置をx=0とし、 まで達したところで運動の向きが反転し まで達したところで 刻t=t に位置 x=x1 の向きに運動を始め, 時刻 t=t に位置 r=I2 た。ばねのばね定数をた。重力加速度の大きさを、床と小物体の 止摩擦係数をμ,動摩擦係数をμ'として, 以下の問いに答えよ。 (1) 静かに放したときに小物体Aが動き出すための x の条件を求めよ。 (2)位置および時刻を求めよ。 (2) 位置におい 小物体Aの加速 m よって, α- これより 小 単振動 (の一 また、xo か (3) 単振動の (3) 時刻 t=0 から t=tの間で, 小物体Aの速さの最大値を求めよ。 (4) 小物体 (4) 位置 2 を求めよ。 4月 EE 講 Aの加速 (大阪府大 ●粗い床上の単振動 粗い床上を単振動する物体に働く動 力は、往路と復路で向きが逆向きとなり,単振動の中心が る。このことから,運動方程式をそれぞれの場合について立てて考える がある。 ●着眼点 1. 粗い床上の単振動 よって, (2) 中心は [別解] 往路復路でそれぞれ運動方程式を立てる。 でき 2. 弾性力の他に動摩擦力など一定の力が働く単振動 鉛直ばね振り子と同様に考える。(→参照p.62) 3.動摩擦力 (非保存力)が働いていても単振動の力学的エネルギー保 法則を用いることができる。 (→参照 p.68) 解説 (1) 小物体が動き出すためには, ばねの力の大きさkoが最大学 力の大きさμmgを越えていればよいから, す Xo kxo>μmg よって、 > μmg k

未解決 回答数: 1
物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0