学年

教科

質問の種類

物理 高校生

(2)の解説のSsinθ=mgtanθはどこから来たのでしょうか。また、円運動の半径がLsinθになるのも全くわかりません。どなたか助けてください。

C/ 基本例題29 円錐振り子 わかんない 基本問題 解説動画 第Ⅱ章 力学Ⅱ 図のように,長さLの糸の一端を固定し,他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を 0, 重力加速度の大きさをgとして 次の各問に答えよ。 (1) おもりが受ける糸の張力の大きさはいくらか。 00 m(Lsine) w²=mg tane w= 円 g L cose 2π L cose =2π 周期 Tは, T=- (2) 円運動の角速度と周期は,それぞれいくらか 地上で静止した観測者には, おもり |指針 は重力と糸の張力を受け,これらの合力を向心力 として,水平面内で等速円運動をするように見え ある。この場合の向心力は糸の張力の水平成分であ (1)では,鉛直方向の力のつりあいの式(2) では円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はLsinである。 解説 m 別解 stic (1) 糸の張力の大き さをSとすると, 鉛 直方向の力のつりあ いから, 10 L Scost S (2) おもりとともに 円運動をする観測者の にはSの水平成分 ・ と遠心力がつりあっ てみえる。 力のつり あいの式を立てると LA m (L sine) w² S +0. Ssin0=mg tan mg 0 Scoso-mg=0 Ssine mg mg S= coso (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」から, (2) の運動方程式と同じ結果が得られる。 m(L sine) w²-mgtan0=003 (1) Point 向心力は、重力や摩擦力のような力の 種類を表す名称でなく,円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 4

未解決 回答数: 1
物理 高校生

(3)の円形電流が中心Oに作る磁場は、紙面に垂直に裏から表の向きとなればよいから、反時計回り。 この答えの意味がわかりません!(1)と同じで表から裏の向きって答えてしまいました。解説お願いします🙏

例題 解説動画 第1章 磁気 基本例題69 直線電流と円形電流がつくる磁場 図のように,長い直線状の導線 XY に 15.7A の電流が流れて おり、そこから20cm はなれた位置に中心Oをもつ,半径10cm の5回巻きの円形導線がある。 両者は同一平面内にあるとする。 (1)直線電流が円の中心0につくる磁場の強さと向きを求めよ。 (2)円の中心0の磁束密度の大きさを求めよ。 ただし, 空気の 透磁率をμ=1.3×10 - N/A2 とする。 基本問題 510,511 X (3)円形導線に電流を流して, 中心0の磁場を0とするには,円 Y 形導線に,どちら向きにどれだけの電流を流せばよいか。 指針 (1) (2) 直線電流がつくる磁場は, 「H=I/(2πr)」 から求められ,磁束密度は, 「B=μH」 から計算される。 (3) 直線電流によってできる磁場と,円形電流 によってできる磁場が打ち消しあうように, 円 形導線に電流を流せばよい。 - (1) 求める磁場の強さは, 解説 I 15.7 H= 2πr 2×3.14×0.20 =12.5A/m 15.7 A 13A/m H 磁場の向きは,右ねじの 法則から、紙面に垂直に 袋から裏の向き (図)。 0 0.20m & ↑ 15.7 A NW (2) 磁束密度の大きさBは, 10cm 0 20cm→ B=μH=(1.3×10-) ×12.5 =1.62×10-5T -1.6×10-5THA-a] (3)巻数N, 半径rの円形電流が,その中心につ くる磁場の強さHは, H=N 2r 円形電流がつくる磁場の強さと, (1) で求めた 磁場の強さが等しくなればよい。 I I=0.50AAR 12.5=5X 2×0.10 円形電流が中心0につくる磁場は,紙面に垂直 に裏から表の向きとなればよい。反時計まわり a\m]s

解決済み 回答数: 1
物理 高校生

カッコ2って鉛直方向の初速度が同じでも小球bがp点に届かなかったらダメなんじゃないですか?それを考えてない理由を教えて欲しいです🙇

する 際 EEE-1-2 =1-13-1 力学的エネルギーは運動エネルギーと位置エネルギーの和をさすが, 位置エネル ギーは衝突の前後で変わっていないので,運動エネルギーの減少を調べればよい。 27 (1) Aを原点として鉛直上向きにy軸をとる。 落下するのは y = 0 のとき だから, 求める時間をとして公式 2 を用いると 0 = vt₁+(-g) t₁² 20 ... = g (2) 鉛直方向の初速度を同じにする必要がある(するとAとBはいつも同じ高 sin α = さにいる)。 そこで Vsin a = v (3) 最高点に達するまでの時間を とすると,公式より 0=v+(-g)t t2= t として 3 求めると早い この間にBは右への距離を動けばよいので l= (Vcosα)t2= Vv g cos α = g Vu √1-sin² a Vv 2 = 1 √√√√² - v² g 動量保存則より (4) 求める水平成分を vx とする。 水平方向での運 MV cos α = (M+m) vx 衝突直前 Mo m Ux= MV M+m M Vcosa 止 2 cos α = M+m Vx 直後 M+m 鉛直成分は A, B 共に衝突前が0なので 0 水平方向は外力がないので運動量保存は厳密に成りたつ。 一方、 鉛直方向は重力が かかっているが, 瞬間的な衝突では(重力の力積が無視できるため) 近似的に適用し てよい。 問題文にとくに断りがなければ, 瞬間衝突と思ってよい。 (5) 初速 ux での水平投射に入る。 落下時間はt なので 鉛直方向に上がる時間 V²-12 と下りる時間は等しい) x=vt= Mo

未解決 回答数: 1
1/318