学年

教科

質問の種類

数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

(2)なぜ、まるで囲ったような条件がでてくるのですか?

たす A G 不等式を満たす点の存在範囲 (1) 重要 例題 27 複素数zが|z|≦1を満たすとする。 w=z+2i で表される複素数について (1) 点wの存在範囲を複素数平面上に図示せよ。 (2) 2 の絶対値をr, 偏角を0とするとき, rと0の値の範囲をそれぞれ求めよ。 ただし, 0≦0<2πとする。 基本 21.23 指針 (1) w=z+2iからz=w2iとして、これを|z|≦1に代入。 下の検討も参照。 (2) w=R(cosa+isina) [R>0] として, ドモアブルの定理を利用。 →rはR,0はαで表すことができるから (1) で図示した図形をもとにして,まず R, α のとりうる値の範囲を調べる。 2h fry. Vi b b + 4 1 2 よって 解答 (1) w=z+2iから z=w-2i これを21に代入して |w-2i|≦1 ゆえに,点の全体は, 点2i を中心と する半径1の円の周および内部である。 よって,点の存在範囲は右図の斜 線部分。ただし、境界線を含む (2) WR (cosa+isina) [R>0] とする と よって, 条件から (1) の図から したがって 1≤r≤9 また,右図において OA=2, AB=1,∠ABO= w²=R²(cosa+isina)²=R²(cos 2a+isin 2a) r=R2, 0=2a |i|≤|w|≤|3i| ゆえに 1²≤R²≤3² ∠AOB= π π 6 sas 2 3 WX... ゆえに 4 ゆえに 12/2012/30 π 537 S 2 同様にして 4 よって 1/23 2013/0 -π≤2α≤ 3″ π これは 0≦0<2πを満たす。 <AOC= π 6 検討 不等式 | Z-α|≦r, z-a|≧rの表す不等式 P(z), A(α) とすると, AP= |z-αであるから ① 不等式 | z-α|≦r (r > 0) を満たす点 全体は 点Aを中心とする半径の円の周および内部 ② 不等式|z-α|≧r (r > 0) を満たす点 2 全体は 点Aを中心とする半径rの円の周および外部 である。 (1) AV 0 Xx <P(ω), A (2i) とすると, |w-will を満たす点w は,点Aからの距離が1 以下の点, という意味をも つ。 (bhs (1) の図から, wの絶対値 |w| は, w=3iのとき最大, w=i のとき最小となる。 |w|=R P(z) A(a) ||z-a|≤r O sol C (2) x O 左 B 3:6 1 P(z) 55 A(a). |z-a|zr 1章 4 複素数と図形 x 練習z-21を満たす複素数zに対し, w=z+√2iとする。 点wの存在範囲を 27 複素数平面上に図示せよ。 また の絶対値と偏角の値の範囲を求めよ。ただし、 偏角は 0≦2の範囲で考えよ。 Op.80 EX21

回答募集中 回答数: 0
数学 高校生

1枚目(右側のノート)では1面を固定して考えるて周りを円順列で計算したら答えが出たのに、なぜ(左側のノート)では同じような計算が出来ないのですか? 2枚目に1枚目(右側)と同じような計算をしたのですが、答えが合わなかったです💦 教えてください🙏

Is sh A RB GI ②A,B,C,D,EFG 全てを使ってぬれ!! -7G - Ting -66₁ - 6500 15-1)=12 底面 下 7×6×12=504 重務があるため 2する じゅず順 00000 12 隣接する順列しない順列 子3人が1列に並ぶとき、 次のような並び方は何通りあるか。 が皆隣り合う うしが隣り合わない NO 0 Ap.240 基本事項 4. p.254 基本事項] Moso 255 1錠 60586=304 産 (126 &(1=5 (4-1)! ( ⑥である必要がある重がるか Q、次の色、すべてを用いて塗る方法は何通りあるか? 隣り合う部分は異なる色にすること。 5 G₁₂ 5色 固定しがい場合 Willkom (1270) (42) 3色 5G 5×14-1)! -30通り atly = 固定しなければ、重衡が生まれてしまう!!( 5C X X(4-1)! 2 15通り 2色の決め方 for 26386 内側の主でみた できる! 4C2=6通り 上下の色が異なるので、 ひっくりかえしても別も のになる。よって、円川 列を用いる よって、6×1= どの声が底面、上面 でも成り立つから。 上下が一緒ならば、 ひっくりかえしたとき 一緒になるので. じゅず順列で考える 残り2色は 回転させだしたら一緒に かるのでそれぞれ1通 6105 サ 3色はすべて向かい合った面

回答募集中 回答数: 0
数学 高校生

この二つの問題を分かりやすく解説してほしいです!

4図1のような。 図1 長方形ABCDがあ る。点Pは頂点 Aを出発し、 毎秒 10cm B 30cm Q 3cmの速さで辺AD上を1往復して、頂点 Aにもどるとそこで止まる。点Qは点P が出発すると同時に頂点Bを出発し、 毎秒 2cmの速さで辺BC上を1往復して頂点 Bにもどるとそこで止まる。 図2は、点Pが頂 図2 30 点Aを出発してから x秒後の線分APの 長さをycmとすると きのx,yの関係を. 0≦x≦30 の範囲で グラフに表したもの である。 次の問いに答えなさい。 [鳥取一部略] (1) 点Qが頂点Bを出発してから秒後の 線分BQの長さをycmとし,xの変域を 0≦x≦30 とする。このとき、xとyの 関係について、次のア、イにあてはまる 式を答えなさい。 0≦x≦15 のとき、y=ア BQ=2×x=2x(cm)より, y=2x 201 C Will 051015202530 10 イ 15≦x≦30 のとき、y= きり BQ=BC+CB-Qの進んだ距離 =30+30-2x=60-2x(cm) 3次関数 IC th 実力 したがって, y=-2x+60 ア 2x イ -2x+60 (2) 四角形APQBが長方形となるのは,点 Pが頂点Aを出発してから何秒後ですか。 しかくけい ちょうほうけい AP=BQのとき, 四角形APQBは長方形にな てん あたい ひと り、点P、Qについてのyの値が等しくなる。 てん しき 10≦x≦20のとき, 点Pの式は、y=-3x+60 しき この式と(1)の0≦x≦15のときの点Qの式 れんりつはうていしき y=2xを連立方程式として解くと、 x-12, y=24 12秒後 数学2年

回答募集中 回答数: 0
1/4