学年

教科

質問の種類

数学 高校生

青チャートの問題です。 鉛筆で丸をつけてあるところがわかりません。なぜこのように移動するのですか?

130 解答 基本 例題 76 2次関数のグラフの平行移動 (2) (1) 2次関数y=2x+6x+7 y=2x²-4x+1 ①のグラフは, 2次関数 (2) x 軸方向に 1, y 軸方向に2だけ平行移動すると, 放物線 ②のグラフをどのように平行移動したものか。 C:y=2x2+8x+9 に移されるような放物線C の方程式を求めよ。 指針 (1) 頂点の移動に注目して考えるとよい。 (2) 放物線Cは, 放物線 C を与えられた平行移動の逆向きに平行移動したもの まず① ② それぞれを基本形に直し、頂点の座標を調べる。 ある。 p.124 基本事項 ②を利用。 (1) ① を変形すると y= =2(x+2/2/2)+ 3 5 5 ①の頂点は点 (12/12) ② を変形すると y=2(x-1)2-1 ②の頂点は 点 (1,-1) Y 3-2 52 ② D: 2x²+6x+7 =2(x2+3x)+7 =2{x2+3+ +7 1 x 0 ②:2x2-4x+1 =2(x²-2x)+1 =2(x²-2x+12) -2.12+1 ② のグラフをx軸方向に py軸方向にgだけ平行移動 したとき, ① のグラフに重なるとすると 3 5 1+p=- -1+9=2 2 5 7 (*) ゆえに p=- g= よって、①のグラフは、②のグラフをx軸方向に 軸方向に だけ平行移動したもの。 (*) 頂点の座標の 見て, 55 1=- 52 2 2'2 2' としてもよい。 軸方向に 1, 軸方向に2 C 軸方向に1, 7 2 (2)放物線 C は, 放物線 C をx軸方向に-1, y軸方向に 2だけ平行移動したもので, その方程式は y-2=2(x+1)+8(x+1)+9 したがって y=2x2+12x+21 別解 放物線 C の方程式を変形するとy=2(x+2)'+1 よって, 放物線 C の頂点は点 (-2, 1) であるから, 放 物線Cの頂点は 点 (-2-1,1+2) すなわち (-3, 3) ゆえに、放物線Cの方程式は y軸方向に2 [x→x-(-1) y-y-2 換え。 とお 頂点の移動に着目 法。 平行移動しても y=2(x+3)^+3=2x2+12x+21 数は変わらない。 練習 (1) 2次関数y=x8x-13のグラフをどのように平行移動すると, 2次関 ② 76 y=x2+4x+3のグラフに重なるか。 (2)x軸方向に -1, y 軸方向に2だけ平行移動すると, 放物線y=x+3x+ されるような放物線の方程式を求めよ。 葛本

解決済み 回答数: 1
数学 高校生

(1)について質問です。 どうして判別式Dは0以上になるのでしょうか? 2つの解と書かれているので重解の場合は含まれないと思いました。 重解の場合も含めていいのでしょうか?

3 基本 52 2次方程式の解の存在範囲 ①①①①① 2次方程式 x2-2px+p+2=0 が次の条件を満たす解をもつように,定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく, 他の解は3より小さい。 p.87 基本事項 89 指針 2次方程式x²-2px+p+2=0の2つの解をα,βとする。 (1) 2つの解がともに1より大きい。→α-1>0 かつβ-1>0 (2)1つの解は3より大きく、他の解は3より小さい。 → α-3 と β-3 が異符号 以上のように考えると, 例題 51 と同じようにして解くことができる。なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα, βとし, 判別解 2次関数 解答 別式をDとする。 D =(−p)² −(p+2)= p²−p−2=(p+1)(p−2) 4 解と係数の関係から α+β=2p, aβ=p+2 (1) α>1,β>1であるための条件は D≧ かつ (α-1)+(β-1)>0 かつ (α-1) (β-1) > 0 (p+1)(p-2)≥0 f(x)=x-2px+p+2 のグラフを利用する。 (1) 0(+1)(p-2)0. 軸について x=p > 1, f(1)=3-p>0 から2≦p<3 YA x=py=f(x) D 0 から よって p≦-1,2≦p ① (α-1)+(β-1)>0 すなわち α+β-2>0 から 2p-2>0 よって p>1 ...... ② 3-p +α P 0 1 B x (α-1) (−1)>0 すなわち αβ-(a+β) +1>0 から p+2-2p+1> 0 よって p<3 ...... 求める』の値の範囲は, 1, 2, ③の共通範囲をとって 2≦p<3 ② ① 1 2 3 Þ 2 2章 解と係数の関係、解の存在範囲 (2) f(3)=11-5p<0から 11 p>1

解決済み 回答数: 1
数学 高校生

この問題では立体Aの形が分からないと解けない問題で合ってますか?このような問題では立体の形は分からなくていいと思っていたので分からなくなってしまいました。回答よろしくお願いします。

388 (2) 切り口を考えたいが, 立体Bはイメージしにくいから 立体Aを「z軸のまわりに回転させる」→それを「平面 z=tで切る」 見方を変える 例題 21. xyz 空間において,D={(x, y, z1≦x≦2,1≦y ≦ 2, z = 0 } で表 された図形をx軸のまわりに1回転させてできる立体をAとする。 (1) 立体 A の体積VA を求めよ。 (2) 立体Aを軸のまわりに1回転させてできる立体Bの体積VB を求 めよ。 (名古屋大 改) ReAction 回転体の体積は、回転軸に垂直な切り口の円を考えよ 例題199 切り口の図形Eは図1の長方形 PQRS となる。 平面 z = t と軸の交点をH, 線分PSの中点をM とすると ゆえに PH = √PM2+MH=√8-1 S(t) = PH-π・12 =(√8-12)² -=(7-12) S 1 点Hから最も遠い点は P, 点Hから最も近い点 はNであるから S(t) = (半径PH の円) (半径NHの円) PM=√22-2 特講 (1) t1のとき 図1' 平面 z=t における図 図2′ 平面 x=2 における図 Q P 12 St P R S' +M z=tr イメージしにくい。 M HN x R -21- 0 立体A を「平面 z = t で切る」→それを「2軸のまわりに回転させる」 AP H 12y P.S. -1 イメージしやすい。 場合に分ける 21 HACS (2 (ア)断面が長方形1個 (イ) 断面が長方形 2個 切り口の図形Eは図1' の tの値によって, z=t 2つの合同な長方形 PQRS, 断面の形が異なる。 H• P'Q'R'S′ となる。 N H x 線分 PP′, QQ' の中点を M, Q' RR 0 0 z=to N とすると -2-1 図3′ 平面 x=1 における図点Hから最も遠い点は 0 12 y P. 点Hから最も近い点 はRであるから S(t) (半径PH の円) (半径RHの円) y 22120) 03-12-09 PHPM² + MH² PM=√22-12 √√8-12 02 4章14 体積・長さ,微分方程式 Action» 切る平面によって断面の形が変わるときは,図を分けて考えよ - RH = √ (1) 立体 A は,底面の半径が2で高 さ1の直円柱から, 底面の半径が 1で高さが1の直円柱をくり抜い た立体である。 y y D 2 2 1 1 02 よって, その体積は O 0 1 2 VA=2°z.1-12.1 = 3π √RN²+NH² √2-12 RN=√1-2 ゆえに (2) 立体Aを軸に垂直な平面 z=tで切ったときの, 切り口の図形をEとし,図形Eをz軸のまわりに1回 転させてできる図形の面積を S(t) とする。 立体Bはxy 平面に関し 対称である。 no (ア)1st ≦ 2 図1 平面 z=t における図 図2 平面 x=2における図 2 H・ P S IM P St z=t, 2 t 2 0 HN M x -2-1 0 1 12y S 2 S(t)=PH-RH 2 = (√8–1²)² -π(√2–1²)² = 6 (ア)(イ)より、求める立体Bの体積は VB =S(t)dt = 2*S(t)dt -26x dt + (7-- =2 =2 S 66 立体Bはxy 平面に関し て対称である。 64 3 212 空間内の平面 x = 0, x=1, y=0, y=1, z=0, z=1 によって囲まれた 立方体をP とおく。Pをx軸のまわりに1回転させてできる立体を Px, P 軸のまわりに1回転させてできる立体をP,とし,さらにPx と Pyの少 なくとも一方に属する点全体でできる立体をQとする。 Jano1 (1)Qと平面 z=t が交わっているとする。 このときPx を平面 z=t で切っ たときの切り口を Rx とし,Py を平面 z = t で切ったときの切り口を R, とする。Rx の面積,Ry の面積, R. と Ryの共通部分の面積をそれぞれ求 めよ。 さらに, Q を平面 z = tで切ったときの切り口の面積S(t) を求めよ。 (2)の体積を求めよ。 (富山大) 38 p.403 問題212

解決済み 回答数: 1
数学 高校生

1の場合だけ,判別式を使える理由を教えてください

重要 例題 104 物 放物線y=x2+αと円x2+y^2=9について,次のものを求めよ。 (1)この放物線と円が接するとき,定数αの値 (2) 異なる4個の交点をもつような定数αの値の範囲 の 0000 指針 放物線と円の共有点についても,これまで学習した方針 共有点 実数解 接点⇔重解 で考えればよい。 解答 x2=y-a これをx2+y2=9に代入して よって y2+y-a-9=0 ...... ここで,x2+y2=9から [1] 放物線と円が2点 で接する場合 37 この問題では,xを消去して, yの2次方程式(y-a)+y2=9の 実数解 重解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1) 放物線と円が 接する とは,円と放物線が共通の接線をも つことである。この問題では, 右の図のように, 2点で接する 場合と1点で接する場合がある。 (2) 放物線を上下に動かし, (1) の結果も利用して条件を満たす。 αの値の範囲を見極める。 (1)y=x2+α から 1点で 接する 2点で接する 消去すると、yの (y-a)+y2=9+2次方程式が導かれる。 ① x²=9-y²≥000 -3≤y≤3 ****** [1] a=- 4 [2] a=-3 a=3 y 2次方程式 ①②の 範囲にある重解をもつ。 よって, ① の判別式を Dとすると D=0 3 3 3- -3 13 O 0 x -3 13 x -3 0 -3 D=12-4.1 (-a-9) 37 =4a+37 であるから =37 a=- このとき、①の解は y=- [2] 放物線と円が1点で接する場合 以上から 図から,点 (0, 3), (0, -3) で接する場合 4a+37=0 すなわち -12となり、②を満たす。 2次方程式 py2+gy+r=0 解け 37 4

解決済み 回答数: 1
1/54