学年

教科

質問の種類

数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1
数学 高校生

因数分解の問題で、cについて整理して下線部のような式にはどうすればなりますか? 計算方法を教えて下さい🙇‍♀️

2 因数分解/2次式・ つぎの式を因数分解せよ. (1) (a-b+c-1)(a-1)-bc (2) 2x2+5xy-12y2-2x+25y-12 (3)(x+2y) (x-y) +3y-1 (酪農学園大酪農、環境) (京都産大・生命) odel-Co SI-((東北学院大・文系) 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 の文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」 をすればよい。 (2)も, x, yの2次式の部分を因数分解すれば同様にできる(別解). 慣習 因数分解せよ,という問題では, 特に指示がない限り, 係数が有理数の範囲で因数分解する . ■解答 (1) まずcについて整理することにより, 与式={c(a-1)+(a-b-1) (a-1)}-bc 与式はαについては2次だが, 6 やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1) (a+c-1) (2) まずについて整理することにより, 5-2x²+(5y-2)x-(12y2-25y+12) =2x²+(5y-2)r-(3y-4) (4y-3) a={x+(4y-3)}{2x-(3y-4)}....... 3-4-25 × -3 ① 1 (4y-3) × 2-(3y-4) →5y-2

解決済み 回答数: 1
1/21