学年

教科

質問の種類

数学 高校生

解答ではι²=f(x)から導いていますが、 最初からι=√f(x)で導くではダメなのでしょうか?

基本 例題 85 2次関数の最大取 000 直角を挟む2辺の長さの和が20である直角三角形において, 斜辺の長さが最小 の直角三角形を求め、その斜辺の長さを求めよ。 20337 TESTERYE 指針> まず、何を変数に選ぶかであるが,ここでは直角を挟む2辺の和 が与えられているから,直角を挟む一方の辺の長さをxとする。 三平方の定理から、斜辺の長さは√f(x) の形。 そこで,まず = f(x) の最小値を求める。 なお,xの変域に注意。 解答 直角を挟む2辺のうち一方の辺の長さを xとすると,他方の辺の長さは20-x で表され, x>0, 20-x>0 であるから ① 0<x<20 斜辺の長さを1とすると, 三平方の定 理から 12=x2+(20-x)2 ...... CHART f(x) の最大・最小 平方したf(x) の最大・最小を考える 400g 200 0 最小 10 20 x =2x2-40x+400 =2(x-10)'+200 ①の範囲で, l'はx=10で最小値200をとる。 このとき、 他方の辺の長さは 20-10=10 >0であるから, が最小となるときも最小となる。 よって, 求める直角三角形は,直角を挟む2辺の長さがともに 10の直角二等辺三角形で、斜辺の長さは /200=10√2 検討 f(x)の最小値の代わりにf(x) の最小値を考えてよい理由 上の解答は, a>0,6>0のとき yA a<b⇒a²<b² が成り立つことを根拠にしている (数学ⅡIで学習)。 このことは, 右の図から確認することができる。 なお,a<0,6<0のとき水は成り立たない。 変数xを定め、 xが何であ るかを書く。 62 基本84 1辺の長さは正であることを 利用してxの変域を求める。 2300 にはxの2次式。→基本 形に直してグラフをかく。 グラフは下に凸, 軸は直線x=10, 頂点は点 (10,200) a² √x+(20-x^2 20-x O y=x2 の断りは重要。 小 大 abx

解決済み 回答数: 1
1/5