学年

教科

質問の種類

数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

EX76の問題を標問135の研究と同じ解き方で、3x+2y=6nを両辺6で割ってx/2+y/3=nになってx=2k、x=2k-1で場合分けして解くことはできますか。

無問 135 格子点の個数 I, y, z を整数とするとき, ry平面上の点(x,y) を2次元格子点, TYz 空 間内の点(x,y,z) を3次元格子点という.m,nを0以上の整数とすると き,次の問いに答えよ. (1) 2012/21/ysm をみたす 2次元格子点(x,y) の総数 + を求めよ. (2) x0,y0,z≧0かつ 1/3+1/13y+zan をみたす 3次元格子点 (x,y,z) の総数を求めよ. (名古屋市立大 ) ・精講 (1) 格子点をどう数えるかが問題で す。研究でx=(一定) となる直 線上の格子点を順次数えてみましたが, 大変です. そこで合同な三角形を付け足して長方形にしてみ たらどうでしょう. (2) z=(一定)となる平面による切り口を考え ると (1) が利用できます。 〈解答 (1) 0(0,0),A(3m, 0), B(3m, 5m),C(0, 5m) とおくと, 与えられた領域は △OACの周および内部である. △OAC≡△BCA であり,線分 AC 上には (0, 5m), (3, 5(m−1)), (6, 5(m-2)), ···, (3m, 0) のm+1個の格子点がある. =1/12 (15) 1 (2) ²/3x+//y+z<n & {√x+} {y≤n-z 求める2次元格子点の総数Sは, 長方形 OABC の周および 内部にある2次元格子点の総数を T, 対角線AC上の2次元格 子点の総数をLとおくと 0 S=1/12(T_L)+L=1/12(3m+1)(5m+1)-(m+1)}+(m+1) -(15m²+9m+2) 解法のプロセス (1) 三角形内の格子点の総数 ↓ 長方形を考える (2) z=(一定) 平面による切 り口を考える と変形する. z(z=n,n-1, n-2, ..., 0) を固定し, 303 3n x n y+ 5mm 0 -n-m B 3m HA IC 5n 第8章

回答募集中 回答数: 0
数学 高校生

問二を教えてください!!

1 | データの分析を利用した問題の解決 これまで学んできたデータを分析する方法を活用して,実際に身の回り や社会の事象について考察し,問題を解決することを考える。問題解決の 進め方として,次の5つの過程からなる枠組みがよく用いられる。 3 周題(Problem) 問題の把握と設定 疑問や解決すべきことに対し,それらに関連があると思われる事柄を 検討して, データを利用して解決できそうな明確な問題を設定する。 5 計画(Plan) データの想定, 収集の計画 問題の考察に必要なデータを集めるために調査や実験の計画を立てる。 10 アンケート調査であれば調査の対象や質問の項目などを考え, 実験で KI あればデータを測定する方法や手順などを考える。 公的機関や企業などが公表している既存のデータを活用することも考 えられる。その際は,データの信頼性や調査方法などに注意する。 ③ データ (Data) データの収集、表への整理の 計画に沿ってデータを収集し,必要に応じて表などに整理する。 記入 や測定にミスがあれば, 値を修正したりデータから除外したりする。 ④ 分析 (Analysis)... グラフの作成, 特徴や傾向の把握 こう DE DEUS OF 目的に応じてデータの特徴を数値やグラフに表し, データの分布の様 子やデータどうしの関連性を調べたり,それらを比較したりする。 2 結論付け,振り返り ⑤ 結論 (Conclusion) 分析の結果から、 設定した問題についてどのようなことがいえるか考 える。十分な結論が得られない場合は,計画を見直したり、 異なる方 法で分析したり,新たな問題を設定したりして,さらに考察を深める。 ... 15

回答募集中 回答数: 0
数学 高校生

問一を教えてください!お願いします!!!

1 | データの分析を利用した問題の解決 これまで学んできたデータを分析する方法を活用して,実際に身の回り や社会の事象について考察し,問題を解決することを考える。問題解決の 進め方として,次の5つの過程からなる枠組みがよく用いられる。 1 問題 (Problem) 問題の把握と設定 疑問や解決すべきことに対し,それらに関連があると思われる事柄を 検討して,データを利用して解決できそうな明確な問題を設定する。 計画 (Plan) データの想定, 収集の計画 問題の考察に必要なデータを集めるために調査や実験の計画を立てる。 アンケート調査であれば調査の対象や質問の項目などを考え, 実験で あればデータを測定する方法や手順などを考える。 公的機関や企業などが公表している既存のデータを活用することも考 えられる。 その際は, データの信頼性や調査方法などに注意する。 ③ データ (Data) データの収集、表への整理 計画に沿ってデータを収集し,必要に応じて表などに整理する。 記入 や測定にミスがあれば, 値を修正したりデータから除外したりする。 グラフの作成, 特徴や傾向の把握 ④ 分析 (Analysis) 06. GE 目的に応じてデータの特徴を数値やグラフに表し、データの分布の様 子やデータどうしの関連性を調べたり,それらを比較したりする。 ⑤ 結論 (Conclusion) 結論付け 振り返り 分析の結果から, 設定した問題についてどのようなことがいえるか考 える。十分な結論が得られない場合は,計画を見直したり,異なる方 法で分析したり,新たな問題を設定したりして,さらに考察を深める。 ... 10

回答募集中 回答数: 0
数学 高校生

青チャートのAです かっこ1で証明に使わない角についてわざわz言及しているのはなぜですか

87 基本例題 接弦定理の逆の利用 00000 10の外部に接線 PA, PB を引く。 点Bを通り, PAと平行 SCOUT な直線が円0と再び交わる点をCとする。 <PAB=a とするとき, ∠BACをaを用いて表せ。 直線 AC は △PAB の外接円の接線であることを証明せよ。 指針 (1) 円の外部の1点からその円に引いた2本の接線の長さは等しいことや, 接弦定理, 平行線の同位角・錯角に注目して,∠PAB に等しい角をいくつか見つける。 (2) 接線であることの証明に、次の接弦定理の逆を利用する。 0,348 TERA 円 0 の弧 AB と半直線 AT が直線 AB に関して同じ側にあって ∠ACB=∠BAT ならば,直線ATは点Aで円0に接する (1) の結果を利用して,∠APB=∠BAC を示す。 解答 (1) PA=PBであるから ∠PAB=∠PBA=a また, PA//BC であるから ∠ABC=∠PAB=α 更に ∠ACB=∠PAB=α よって, △ABCにおいて ∠BAC=180°−2a ...... P おいて、円の CHART》 接線であることの証明 接弦定理の逆が有効 (19) A B89 使わない DETERA ∠APB=180°-2a 0円 13 p.436 基本事項 ② ...... A HA3 | 接線の長さの相等。 a NGAPDATA C onit SA SEN 09:A ART SI (2) AAPBにおいて 1⑩② から ∠APB=∠BAC THIAPATIA したがって,直線 AC は △PAB の外接円の接線である。 A4 接弦定理の逆 B 439 T > 平行線の錯角は等しい 接弦定理 PROL PA- とし、その手をとすると、名は てみよし、これから △PAB は二等辺三角形。 79-84-A4 A 章 144 円と直線、2つの円の位置関係 <DO & FR>

回答募集中 回答数: 0
1/2