学年

教科

質問の種類

数学 高校生

こういう問題で、f(x)というものをよく見かけるのですが、これはどのような場合に用いるのでしょうか?解答をかくときに毎回意味が分からなかったので、教えてもらえると嬉しいです。

頻出 ★★☆☆ こを求めよ。 y=ax2+bx+6 105 絶対不等式 [1] 不等式の解の存在 ★★☆☆ (1) すべての実数xについて, 2次不等式+2kx-3k+4>0が成り立 つような定数kの値の範囲を求めよ。 Acid (2) 2次不等式 x-kx+k+3<0 を満たす実数x が存在するような定 数kの値の範囲を求めよ。 ReAction 不等式は,グラフと x 軸の位置関係を考えよ 例題98 3 x 4+ =ax2+bx+6 このプロセス 「条件の言い換え (1) すべてのxについて (1) (2) y= ⇒y= のグラフがx軸より上側にある。 とx軸の共有点は [ 3 (2)y= のグラフがx軸より下側にある 部分が存在する。 + a B 9 y= とx軸の共有点は 2次関数と2次不等式 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 V y=f(x) D<0 のグラフ ■, x軸と (1) f(x)=x2+2kx-3k +4 とおく。 - 0)で交 例題 93 すべての実数x について f(x)>0 が成り立つのは, y=f(x)のグラフがx軸と共有点をもたないときである。 よって, f(x) = 0 の判別式をDとすると D< 0 を満たす D ゆえに 1=k-(-3k+4)=k+3k-4 4 グラフ = (k+4)(k-1)0 軸と したがって -4<k<1 0) で交 (2) f(x)=x-kx+k+3 とおく。 f(x) <0 を満たす実数x が存在するのは,y=f(x)の 例題 グラフがx軸と異なる2点で交わるときである。 y=f(x) のグラフは下に 凸の放物線であり、 次の ようになればよい。 \y=f(x) 93 よって,f(x) = 0 の判別式をDとすると D> 0 たす ゆえに D=(-k)2-4(k+3)=k-4k-12 =(k+2)(k-6) > 0 したがって k<-2,6<h B) Point... 絶対不等式 A x D>0 例題 105 (1) では,与えられた不等式 x2+2kx-3k+40 から, 機械的に D> 0 とし てしまう誤りが多い。 3) 必ず「不等式の条件」 を 「グラフの条件」 に言い換えてから, 判別式の条件を考えるよ うにする。 105(1) すべての実数xについて, 2次不等式 x+kx+2k+50 が成り立つよ うな定数kの値の範囲を求めよ。 (2) 2次不等式 2x²-3kx+4k+2 <0 を満たす実数x が存在するような定数 んの値の範囲を求めよ。 191 p.220 問題105

解決済み 回答数: 1
数学 高校生

31と32の解き方の違いを教えて下さい🙇‍♀️

基本20 重 62 基本 例題31 2つの無限等比級数の和 ①① 無限級数 (1-1/2)+(1/2-2/21)+(1/3/3-2/17)+ +...... の和を求めよ。 p.54 基本事項 CHART & SOLUTION 無限級数 まず部分和 Sm nom この数列の各項は()でくくられた部分である。 部分和 Sm は有限であるから,頃の順序 を変えて和を求めてよい。 [注意] 無限の場合は、無条件で項の順序を変えてはいけない (重要例題 32 参照)。 別解 無限級数 Σan, 20m がともに収束するとき n=1 n=1 (a+b)=an+26m が成り立つことを利用。 n=1 n=1 n=1 解答 初項から第n項までの部分和を Sn とすると Sn=(1+1/+1/28++g/1)-(12/2+2/23+ ......+ 1-(1/1)/1-(1/2)"} +...+ 2n 2/2/2) Sは有限個の和であ から、左のように 変えて計算しても 3 1 1 1- 1 3 20 3 lim Sn 1-2 n→∞ 別解 n=1 00 S=1221-1-1/2 であるから,求める和は (1-1/2)+(1/3-2/2)+(3/2-2/23)+ 00 n=1 1 3n-1 2n 1 は初項 1. 公比 1/3の無限等比級数であり、 3n- 2/1/17は初項 1/12公比 1/12 の無限等比級数である。 <1 公について/12/1 であるから,これらの無 限級数はともに収束して, それぞれの和は -0+0= ( n→∞のとき 0, [inf.] 無限等比級数の収束 α=0 または |r|<] このときは 1- ◆収束を確認する 8 1 1 3 00 = 2 3n-1 n=13 = 1 2' 1 n=1 2n =1 3 1- 2 00 よって 1 3 2n-1 n=1 2" -1= PRACTICE 31° 次の無限級数の和を求めよ。 (1)(1+1/+1/+1)+(1/+1)+ 23 +... 32 33 2 (2) 33-2, 3-2 3-2

解決済み 回答数: 1
1/796