学年

教科

質問の種類

数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0
数学 高校生

赤線のところがわからないです。なぜこうなるんですか?

練習 @ 2 (1) (2)どちら (ANB)+) 別] 方程式を作る =n(AUB)- -169-64-105 図のように、を定めると 048-147 b+c=86 a+b+c+131=300 これらから (1) b=64 (2) a+c=105 ・U (300) A(147) a b C B (86) の結果を ←本冊300 照。 B B A 64 83 131 A 22 131 計86214 練習 デパートに来た客100人の買い物調査をしたところ, A 商品を買った人は80人, B商品 3 ある。また、両方とも買わなかった人数のとりうる最大値はで,最小値は 人は70人であった。 両方とも買った人数のとりうる最大値はで,最小値はイ 全体の集合を全体集合Uとし, A 商品, B 商品を買った人の 集合をそれぞれA, B とすると, 条件から n(U)=100,n(A)=80, n(B)=70 ( 両方とも買った人数はn (A∩B) で表され, n (A∩B) は, n(A)>n(B)であるから,ABのとき最大になる。 ゆえに n(A∩B)=n(B)=ア70 また,n (A∩B) は, AUB=Uのとき最小になる。 n(A∩B)=n(AUB)=n(U)-n(AUB) =n(U)-{n(A)+n(B)-n(A∩B)} 20 123 ③4 したがって 50$70 ≦n(A∩B)-50≦2 (A∩B) 20 練習ある高校の生徒140人を対象に、国語 ないかを調査した。 その結果, 国語が得 国語と数学がともに得意な人は18人 得意な人は101 人, 数学または英語が ない人は20人いた。 このとき、3科目 のみ得意な人は人である。 ANBI 生徒全体の集合をひとし、国語、 をそれぞれA, B, Cとすると n(U)=140, n(A)=86, n n(A∩B)=18,n(ANC)= n(BUC)=55,n (AnBr これから (AUBUC)=n(U)-r (C)=n(AUC)-n(A n(B∩C)=n(B)+n(C ここでn (AUBUC)=n(A -n(ANB)-n であるから、3科目のすべて n(A∩B)=n (AUB =120-86 また, 3科目中1科目の は、右の図の斜線部分で n(AUBUC)-n(Ar -n(ANC =120-18-15-15+ ←ADBのとき AnU(100). A(80) B(70) このとき n(A∩B)=n(A)+n(B)-n(AUB) =n(A)+n(B)−n(U) 20 (70) =80+70-100=50 次に,両方とも買わなかった人数はn (A∩B) で表され,LAUB=Uのとき TR-E-001- ・U (100) - A(80 ANB 練習 =100-80-70+n (A∩B) (50) 45 =n(A∩B)-50 B(70) したがって,n (A∩B) が最大, 最小となるのは, それぞれ n(A∩B) が最大、最小となる場合と一致する。 分母を700,分子を この集合の要素の 700=22・52・7である 5でも7でも割り切 よって最大値は 70-50=20,入る 1から699 までの整 最小値は 50-50=0 Uの部分集合のう 検討(ウ),(エ) 不等式の性質を用いて解くこともできる。 の集合をB, 7の ←数学Ⅰ 参照。

未解決 回答数: 0
1/57