数学
高校生

赤線のところがわからないです。なぜこうなるんですか?

練習 @ 2 (1) (2)どちら (ANB)+) 別] 方程式を作る =n(AUB)- -169-64-105 図のように、を定めると 048-147 b+c=86 a+b+c+131=300 これらから (1) b=64 (2) a+c=105 ・U (300) A(147) a b C B (86) の結果を ←本冊300 照。 B B A 64 83 131 A 22 131 計86214 練習 デパートに来た客100人の買い物調査をしたところ, A 商品を買った人は80人, B商品 3 ある。また、両方とも買わなかった人数のとりうる最大値はで,最小値は 人は70人であった。 両方とも買った人数のとりうる最大値はで,最小値はイ 全体の集合を全体集合Uとし, A 商品, B 商品を買った人の 集合をそれぞれA, B とすると, 条件から n(U)=100,n(A)=80, n(B)=70 ( 両方とも買った人数はn (A∩B) で表され, n (A∩B) は, n(A)>n(B)であるから,ABのとき最大になる。 ゆえに n(A∩B)=n(B)=ア70 また,n (A∩B) は, AUB=Uのとき最小になる。 n(A∩B)=n(AUB)=n(U)-n(AUB) =n(U)-{n(A)+n(B)-n(A∩B)} 20 123 ③4 したがって 50$70 ≦n(A∩B)-50≦2 (A∩B) 20 練習ある高校の生徒140人を対象に、国語 ないかを調査した。 その結果, 国語が得 国語と数学がともに得意な人は18人 得意な人は101 人, 数学または英語が ない人は20人いた。 このとき、3科目 のみ得意な人は人である。 ANBI 生徒全体の集合をひとし、国語、 をそれぞれA, B, Cとすると n(U)=140, n(A)=86, n n(A∩B)=18,n(ANC)= n(BUC)=55,n (AnBr これから (AUBUC)=n(U)-r (C)=n(AUC)-n(A n(B∩C)=n(B)+n(C ここでn (AUBUC)=n(A -n(ANB)-n であるから、3科目のすべて n(A∩B)=n (AUB =120-86 また, 3科目中1科目の は、右の図の斜線部分で n(AUBUC)-n(Ar -n(ANC =120-18-15-15+ ←ADBのとき AnU(100). A(80) B(70) このとき n(A∩B)=n(A)+n(B)-n(AUB) =n(A)+n(B)−n(U) 20 (70) =80+70-100=50 次に,両方とも買わなかった人数はn (A∩B) で表され,LAUB=Uのとき TR-E-001- ・U (100) - A(80 ANB 練習 =100-80-70+n (A∩B) (50) 45 =n(A∩B)-50 B(70) したがって,n (A∩B) が最大, 最小となるのは, それぞれ n(A∩B) が最大、最小となる場合と一致する。 分母を700,分子を この集合の要素の 700=22・52・7である 5でも7でも割り切 よって最大値は 70-50=20,入る 1から699 までの整 最小値は 50-50=0 Uの部分集合のう 検討(ウ),(エ) 不等式の性質を用いて解くこともできる。 の集合をB, 7の ←数学Ⅰ 参照。

回答

まだ回答がありません。

疑問は解決しましたか?