学年

教科

質問の種類

数学 高校生

一対一対応の演習の微分問題です。 (イ)の(2)なのですが、f(α)-f(β)をするのは理解できるのですが、どうして積分が出てくるのか分かりません。誰か教えてください😭😭

このとき, a= 3 極値の条件から求める (ア) 3次関数f(x)=23+ar2+bx+cはx=1で極大値6をとり,r=2で極小値をとるとする。 =,b=,c= である. また, f(x) の極小値は □である。 (大阪産大) (イ) f(x)=x-3ar2+3bx について、 次の問いに答えよ. (1) f(x) が極値を持つ条件をα, b で表せ. (2) f(x)の極大値と極小値の差が4となるための条件を a, b で表せ. (鈴鹿医療科学大) f'(x) を主役にする f(x) が3次関数のとき, f (x)は2次関数になり, 極値をとるェの値が 1,2と与えられると,'(1)=f(2) = 0 となるので、f'(x)はほとんど決まってしまう. f(x)=2x+a2+bx+c の未知数a, b, c についての関係式を立てて a, b, c を求めるよりも、f'(x) を求めにいった方が手際よい. 3次関数の極値の差は導関数の定積分で f'(x) =0の解をα, β (α <β) とすると f(x)=a(x-a)(z-B)とおける.また, 極値の差は,f(a)-f(B)=fff'(x) dr である.こうと らえると,定積分の公式∫(エーα) (1-B) dr=-1/2 (B-α)を用いることができて計算が楽になる. (2)は多収式] 解答 18 (ア) f(x) = 2x3+ax2+bx+c...... ① f'(x)=6x2+2ax+b...... ② f(x)はx=1, 2で極値をとるから、 (x)=0の解がx=1,2となり, f'(x) は, (x-1)(x-2)で割り切れる。 ②で2次の係数が6であることから f'(x) =6(x-1)(x-2)=6x²-18x+12 因数定理 ②より 2a=-18, 6=12 . α=-9, b=12 zat4a-46 zat 2/a-b f(x)=2x3-9x2+12x+c 2 2 f(1) =6より, 2-9+12+c=6 .. c=1 極小値は, f (2) =2・23-9・22+12・2+1=5 (イ) (1) f'(x)=3(2-2ax+b) f'(x) =0が相異なる2実解を持つこ とが条件で, 判別式D>0. つまり、α-60 (2) f(x) =0を解いて,r=a±√d-ba=a- a=a-√√a²-b, B=a+√a²-b とおくと, f'(x)のxの係数が3であるから, f'(x) =3(x-α)(x-β) f(a)-f(B)=f(x)dx=∫3(エーα)(エーB)dr=2 (α-B)3 f(a)-- SS f(B) N |y=f(x) if(a)>f(B) >>√ª² (x-a) (x−B) dx €( 9 −zº / )v=e( 9—¿º (2) ² =¢( 0-8)= 極値の差が4であるから, 4(√2-634 S .. α-b=1 [6分の1公式]

未解決 回答数: 0
数学 高校生

右側の補足を読んでも分からないんですが、なぜそれぞれの確率の分子で-1してるんですか?🙇‍♂️ 6分の1かける5分の1だったらダメな理由はなんですか?🙇‍♂️

432 基本 例題 51 確率変数の期待値 ードを同時に引くとき,引いたカードの番号の大きい方を Xとする。このと 1から6までの番号をつけてある6枚のカードがある。この中から2枚のカ き, 確率変数Xの期待値 E (X) を求めよ。 CHART & SOLUTION 確率変数Xの期待値(平均) E(X)=Exp Xのとりうる値をx(k=1, 2,.....,n) とし,x=P(X = xx) とすると (X)=x+x+x=2xp k=1 p.428 基本事項 21 まず, Xの確率分布を求める。 その際, 確率Pの分母をそろえておくと, 期待値の計算がら くになる。下の解答では,C2=15 にそろえている。 解答 6枚のカードから2枚を引く方法は全部で C2通り Xのとりうる値は 2, 3, 4, 5, 6 である。 それぞれの値をとる確率は P(X=2)=282-131P(X=3)=- 15 P(X=4)=41=135, P(X=5)= P(X=6)=- 6C2 6-1_5 = 6C2 15 31_2 6C2 _5-1 = 6C2 15' 2715 15' よって, Xの確率分布は次の表のようになる。 X 2 3 45 6 計 1 2 3 4 5 P 1 Xは大きい方の数字で あるから, X=1 はあり 得ない。 X=k(26) のとき, 1枚はんのカードで 残 りは (k-1)枚から1枚 選ぶから, X=k である 確率は P(X=k)=k-1 6C2 15 15 15 15 15 ■えに, Xの期待値は 2 +5• E(X)=2-13 +3.1 +4.1/3 +5.15 +6.15 ・+3・ 15 15 _70_14 15 3 15 ・+6・ (起こりうるすべての場 合の数)=15 分母を そろえる。 (変数)×(確率)の和 答は約分する。

回答募集中 回答数: 0
1/21