学年

教科

質問の種類

数学 高校生

線を引いたところはなぜ普通の分散の計算じゃないんですか?そもそもuがなんなのかがよくわかりません

5-4 データの 377 うえる。 かといって, お小遣い 出題度 平均年齢が30 になった。 次 分散が3で というのは 人数が多い 11 (1)は(和)=(平均値)×(すべての度数)で計算すればいいんですよ ねこ そうだね。 308 基本例 例題 186 仮平均の利用 次の変量xのデータについて, 以下の問いに答えよ。 726,814,798,750,742,766,734,702 0000 (1) y=x-750 とおくことにより, 変量xのデータの平均値x を求めよ。 x-750 (2) u= 8 とおくことにより,変量xのデータの分散を求めよ。 (1)のデータの平均値を とすると, y=x-750 すなわち x=y+750である よって まずyを求める。 (2)x, uのデータの分散をそれぞれ sx2, Su² とすると, sx = 8's² である。よって、 ず変量xの各値に対応する変量uの値を求め, su2 を計算する。 (1) yのデータの平均値をyとすると y= | | (- {(-24)+64+48+0+(-8)+16+(-16)+(-48)}=4 (1)x1(726+..+ x=1/08 (726 としても求められるが 考事項 偏差値 までに学んだ平均値, 標準偏差を用いて求められる健 で、もう一方 解答 ゆえに x=y+750=754 x-750 (2) u= 8 とおくと, u, u2 の値は次のようになる。 答の方が計算がらく x 726 814 798 750 742 766 734 702 計 y -24 64 48 0 -8 16 - 16 -48 32 U -3 8 6 0 -1 2 -2 -6 4 u² 9 64 36 0 1 4 4 36 154 よって, uのデータの分散は PS (uのデータの分散) = 8 154-(1)-76-19 (u2のデータの平均 = (uのデータの平均 ゆえに、xのデータの分散は 値の 82×19=1216 sx=8²² があげられる。 複数教科の試験を受けた場合,平均 が各教科の実力の差を見極めることは難しい。粘 義される。 各教科の実力の差を比較しやすい。 偏差値は、偏差 データの変量xに対し,xの平均値をx ×10 によって得られる y = 50+ x-x Sx 偏差値の平均値は 50,標準偏差は 10 である 入学共通テストや, その前身である大学入試 偏差も発表されている。 それらの値を利用 ] ある生徒の大学入試センター試験の国語 通りであった。 大学入試センター試験得点 国語 (200点) 数学ⅠA (100点) 英語 (200点) 15 8 3教科の偏差値を求めると 150-98.67 国語 50+ 26.83 85-62.08 数学 50+ 21.85 170-118. とも C 均という。 参考上の例題 (1) の 「750」 のように,平均値の計算を簡u=x-x -の x を仮 単にするためにとった値のことを仮平均という。仮平 均を自分で設定する場合, 計算がらくになるようなもの を選ぶ。 具体的には,各データとの差が小さくなる値 (平均値に近いと予想される値)をとるとよい。 英語 50+ 41.06 上の計算から, 得点率で比較す が、偏差値で比較すると, 国語 偏差値を用いることで自分の相対位 正規分布 (詳しくは数学Bで学習) 次の表のようになることが知られて 偏差値 75 70 65

回答募集中 回答数: 0
数学 高校生

222. 3行目の恒等式が成り立つ理由は何なのでしょう? また、この左辺は (mx+n)-x^3(x-4)でもいいのでしょうか? どっちでどっちを引くかは決まっているのでしょうか?? 最後に、「s,tはu^2-2u-2=0の解」とありますが u^2-2u-2=0はどこから出... 続きを読む

0 00000 演習 例題2224次関数のグラフと2点で接する直線 関数y=x(x-4) のグラフと異なる2点で接する直線の方程式を求めよ。 [類 埼玉大] 基本199 指針▷次の①~③の考え方がある [ただしf(x)=x(x-4), s≠t]。3の考え方で解いてみよう。 ①点(t, f(t)) における接線が, y=f(x)のグラフと点 (s, f(s)) で接する。 (s, f(s)), (t, f(t)) におけるそれぞれの接線が一致する。 ③ y=f(x)のグラフと直線y=mx+nがx=s,x=tの点で接するとして、 f(x)=mx+nが重解s, tをもつ。 → f(x)-(mx+n)=(x-s)(x-t)^ 解答 y=x(x-4) のグラフと直線y=mx+nがx=s,x=t (st) の点で接するとすると、次のxの恒等式が成り立つ。 x³(x-4)-(mx+n)=(x−s)²(x−t)² (左辺)=x^-4x-mx-n (右辺)={(x-s)(x-t)}'={x2-(s+t)x+st}2 =x4+(s+t)2x2+s2t2-2(s+t)x-2(s+t)stx+2stx2 =x¹−2(s+t)x³+{(s+t)²+2st}x²−2(s+t)stx+s²t² 両辺の係数を比較して -4=-2(s+t) -m=-2(s+t)st ①から s+t=2 ③から m=-8 2JX ①, 0=(s+t)^2+2st ③, -n=s²t² ...... 4 これと②から ④から st=-2 n=-4 ②, ya NX 下の別解は、指針の①の考 え方によるものである。 10 <s≠t を確認する。 s, tu²-2u-2=0の解で,これを解くと u=1± √3 よって, y=x(x-4) のグラフとx=1-√3,x=1+√3の点 で接する直線があり, その方程式は y=-8x-4 別解y'′=4x-12x² であるから, 点 (t, t (t-4)) における接線の方程式は y-t³(t-4)=(4t³-12t²)(x-t) 5 y=(4t³-12t²)x-3t4+8t³ (*) x4-4x3=(4t3-12t2) x-3t+8t tと異なる重解をもつことである。 この直線がx=s (s≠t) の点でy=x(x-4) のグラフと接するための条件は, 方程式 (x-t)^{x^2+2(+-2)x+3t2-8t}=0 これを変形して よって, x2+2(-2)x+3t2-8t=0 Aの判別式をDとすると t2-2t-2=0 D=0 とすると このとき, Aの重解はs=-(t-2)=1+√3(複号同順) t=1±√3はピ-2t-2=0 を満たし 3+4+81³= -(t²-2t-2) (3t²-2t+2)−4=−4 D=(1-2)²-1·(31²-8t) = -2(t²—2t—2) これを解くと Aが, tと異なる重解 s をもてばよい。 t=1±√3 4t³-12t²=4(t²—2t-2)(t-1)-8=-8 ゆえに,(*) から よって, s≠tである。 y=-8x-4 SMA CH |√=3a おける すなわ この接 f( (t) Ot

回答募集中 回答数: 0
数学 高校生

224. 赤で書かれているu≠0について質問です。 これはg'(t)=6t(t-u)であり、 g'(t)=0のときt=0,u 極小値と極大値両方を持つ必要があるので u≠0ということですか?? また、「かつ」という書き方ではなくこうでもいいですか? (写真) 最後に、 ... 続きを読む

342 BE ひ)を通る 線Cの接線が3本存在するための u, vの満たすべき条件を求めよ。また、そ 条件を満たす点(u, v) の存在範囲を図示せよ。 演習 例題2243本の接線が引けるための条件 (2) |f(x)=x-x とし, 関数y=f(x) のグラフを曲線Cとする。点(u, 指針 前ページの演習例題223と考え方は同様である。 ① 曲線C上の点 (t, f(t)) における接線の方程式を求める。 (②21で求めた接線が, 点 (u, v) を通ることから,t の3次方程式を導く。 [③3] [②2] の3次方程式が異なる3個の実数解をもつ条件を,u, の式で表す。.... g(0)g(u) < 0 から (u+v)(-u³+u+v) <0 ②2 ②でu=0 とすると<0 となり,これを満たす実数は存在 しない。ゆえに,条件u≠0は②に含まれるから, 求める条件 は ② である。 u+v>0 ②から よって ....... -u³+u+v<0 u+v<0 \u³+u+v>0 ゆえに,点(u, v) を通るCの接線が3本存在するための条件s-# は,t の3次方程式 ① が異なる3個の実数解をもつことである。 よって,g(t)=2t3-3ut'+u+cとすると, g(t) は極値をもち, 極大値と極小値が異符号となる。 g'(t)=6t2-6ut=6t(t-u) であるから u=0 かつg(0)g(x)<0 v>-u \v<u³_u または <-u または \v>u³_u0 したがって,点(u, v) の存在範囲は 右の図の斜線部分。境界線を含まない。 解答 f'(x)=3x2-1であるから, 曲線C上の点の座標を(t, f(t)) とすると,接線の方程式は y-(t³-t)=(3t²-1)(x−t) DROLON y=(3t²-1)x-2t3 すなわち この接線が点 (u, v) を通るとすると+v=(3t2-1) u-2t3 よって 2t3-3ut2+u+v=0 ① 3次関数のグラフでは, 接点が異なれば接線も異なる前ページの検討参照 [1] 2c x≥0 にな ①を した これ [2] 2 f'(x V √√30 3 2√3 9 基本 219,演習20 DACO 2√3 √3 3 _y_f(t)=f'(t) (x-t) p.337 の例題 219 参照。 CLONEENHOU g' (t)=0 とすると t=0, u u=0のとき、 t=0,uの うち一方で極大、他方で 小となる。 v=uuのとき v=3u²-1 v=0 とすると √3 3 = u=± √3 のとき 3 u=± 2√3 9 (複号同順) 直線では線 CO 原点Oにおける接線。 ⑤ 224 曲線 Cの接線が3本存在するためのu, v 練習 f(x)=-x 3 +3x とし, 関数 y=f(x)のグラフを曲線Cとする。 点 (u, の条件を満たす点(u, v) の存在範囲を図 演習 ひの満たすべき条件を求めよ。 αは定 にαの また 指針▷f い)を運 解答 f(x)=x と 1 0 7 f'(x)= 求める ① [3] ①を よっ ゆよこい XM 表 これ [1]~ 練習

回答募集中 回答数: 0
1/10