学年

教科

質問の種類

数学 高校生

マーカーの部分を教えてください

08 基本 例題 65 最大・最小の文章題 (2) 0000 座標平面上で、点Pは原点Oを出発して、x軸上を毎秒1の速さで点(6 まで進み、点Qは点Pと同時に点(一般)を出発して、毎秒1の速さで 0まで進む。この間にP,Q間の距離が最小となるのは出発してから何 か。 また、その最小の距離を求めよ。 CHART SOLUTION 解答 ✓f(x) の最大・最小はf(x)の最大・最小を考える 基本 t秒後のP,Q間の距離をd とすると, 三平方の定理からd=f(t) の形にな る。ここでd> 0 であるから,d=f(t)が最小のときdも最小となる。 出発してからt秒後のP, Q 間の距離 を dとする。 P, Qは6秒後にそれぞ れ点 (6,0,0,0)に達するから 0≤t≤6 ...... ① このとき, OP=t, OQ=6-t である 6- TUAN JS x ◆ tのとりうる値の範囲 点Qのy座標は t-6 から, 三平方の定理により -6 d=t+(6-t)2=2t-12t+36 =2(t-3)2+18 よって、①の範囲の tについて, d2 は t=3で最小値18 をと る。 d> 0 であるから,このときも最小となる。 ゆえに、3秒後にP, Q間の距離は最小になり、 最小の距離は 18=3√2 である。 ◆軸t=3は①の範囲内 この断りは重要! 81-38 INFORMATIONdの大小はdの大小から らdが最小のときも最小に 右のグラフから ずその最小値を求めている。これはd>0でdが恋 例題では,d=√2+62の根号内のα+62 を取り出して,ま y Lv=5

未解決 回答数: 1
数学 高校生

高一数学です。 こちらの文章問題の不等式を作る中で(x-1)となる理由がわかりません…教えてください🙇‍♀️

71 基本 例題 39 1次不等式と文章題 00000 何人かの子ども達にリンゴを配る。1人4個ずつにすると19個余るが, 1人7 個ずつにすると,最後の子どもは4個より少なくなる。このときの子どもの人 数とリンゴの総数を求めよ。 指針 不等式の文章題は、次の手順で解くのが基本である。 [類 共立女子大 ] 基本34 この値を求め ことに注意 とは考えな に分けて 条件。 はダメ 1 41次不等式 章 ① 求めるものをxとおく。 ここでは,子どもの人数をx人とする。 ② 数量関係を不等式で表す。 リンゴの総数は 4x+19 (個) 「1人7個ずつ配ると, 最後の子どもは4個より少なくなる」 という条件を不等式で表す。 3 不等式を解く。 4 解を検討する。 注意 不等式を作るときは, 不等号に ② で表した不等式を解く。 xは人数であるから, xは自然数。 を含めるか含めないかに要注意。 a <b... b は a より 大きい, αは6より小さい, a は 6 未満 a≦b....... ・6は α 以上, αは以下 CHART 不等式の文章題 大小関係を見つけて不等号で結ぶ の形に -1(> の向き 求めるものをと ない 。 子どもの人数をx人とする。 不等 解答 1人4個ずつ配ると19個余るから,リンゴの総数は 4x+19 (個) する。 - る。 これを不等式で表すと 式は 整理して 0≦4x+19-7(x-1)<4 0≦-3x+26<4 各辺から26 を引いて 26≦x<-22 22 各辺を-3で割って 26 <xs 3 1人7個ずつ配ると、最後の子どもは4個より少なくなる から,(x-1) 人には7個ずつ配ることができ,残ったリンとく ゴが最後の子どもの分となって, これが4個より少なくな 12 不等式で表す。 は、(総数){(x-1) 人に配ったリンゴの数} ③ 不等式を解く。 ④解の検討。 23 22 =7.3.... 26 3 ・=8.6... xは子どもの人数で, 自然数であるから したがって 求める人数は 8人 また,リンゴの総数は 4・8+19=51(個) 4x+19

未解決 回答数: 1
1/14