学年

教科

質問の種類

数学 高校生

【確率】大問4の確率の問題を教えてください.  テキスト,授業ノートを寮に忘れたので,全くもって手がつけれはません.  各問の解法を教えていただきたいです.  また,確率問題を解く上でのアドバイス等も教えていただきたいです.  よろしくお願いします.

2/2 問題1 A= 問題用紙 (数学・応用数学) 10 1 030 とおくとき、 下の問いに答えなさい。 101 (1) A の固有多項式 ]tE A を求めなさい。 ただし, Eを3次単位行列とする。 (2) A の固有値と固有ベクトルを求めなさい。 問題2の関数 y=g(x) に関する微分方程式 (*) g/" + y = sing を考える。 u = u(x)=-ycosx+y' sinx, v=v(x)=ysinz+ycosx とおくとき, 下の問いに答えなさい。 (1) ucos+using=yが成り立つことを示しなさい。 (2) , vxの関数として表しなさい。 (3) , を関数として表しなさい。 (4) 微分方程式 (*)の一般解を求めなさい。 問題3 ry 平面において, 領域 S, T を S x² + y² ≤1 T: 1≤ x² + y² ≤ 4,0 ≤ y ≤ と定義する。 下の問いに答えなさい。 (1) 重積分 + 1161202 +y^) drdy を求めなさい。 (2) 重積分 ff. te tan-1dxdy を求めなさい。 I 問題4nを自然数とする。 箱Aには赤玉1個と白玉2個が入っている。 箱Bには赤玉2個 と白玉1個が入っている。 まず箱Aと箱Bをでたらめに選ぶ。 次に、選んだ箱から 復元抽出で回繰り返し玉を取り出す。 下の問いに答えなさい。 (1)n=1のとき, 赤玉が取り出される確率を求めなさい。 (2) n回全てで赤玉が取り出される確率 pm を求めなさい。 (3)回全てで赤玉が取り出される条件の下でn+1回目も赤玉が取り出される条 件付き確率を求めなさい。 問1枚中の 1枚目一 長岡技術科学大学

回答募集中 回答数: 0
数学 高校生

【編入学】写真は,長岡技科大令和2年の数学の問題です.教えてほしい問題は,問題1です. (1)三次単位行列がうまくできません.  そもそもの単位行列の作り方と,解法を教えてください. (2)この問題は,(1)が解ければ自力で解けると思います.答え合わせの参考までに,解法... 続きを読む

2/2 問題用紙 (数学・応用数学) 1 201 問題1 A= 030 とおくとき、 下の問いに答えなさい。 10 1 (1) A の固有多項式 [tE-A を求めなさい。 ただし, Eを3次単位行列とする。 (2) A の固有値と固有ベクトルを求めなさい。 問題2 の関数y=g(x) に関する微分方程式 (*) g" + y = sing を考える。 u = u(x)=-ycosx+y' sinz, v=v(z)=ysinz+g cosx とおくとき, 下の問いに答えなさい。 (1) -ucosz+usinz=yが成り立つことを示しなさい。 (2) u v を関数として表しなさい。 (3) , をxの関数として表しなさい。 (4) 微分方程式 (*) の一般解を求めなさい。 問題3 ry 平面において, 領域 S, T を S x² + y² ≤1 T: 15x² + y² ≤ 4,0 ≤ y ≤ と定義する。 下の問いに答えなさい。 (1) 重積分 JJ (s' + g')dzdy を求めなさい。 (2) 重積分 If tan-1 / dudy を求めなさい 。 問題4nを自然数とする。 箱Aには赤玉1個と白玉2個が入っている。 箱Bには赤玉2個 と白玉1個が入っている。 まず箱Aと箱Bをでたらめに選ぶ。 次に、 選んだ箱から 復元抽出で几回繰り返し玉を取り出す。 下の問いに答えなさい。 (1) n=1のとき, 赤玉が取り出される確率を求めなさい。 (2)回全てで赤玉が取り出される確率pn を求めなさい。 (3) 回全てで赤玉が取り出される条件の下で+1回目も赤玉が取り出される条 件付き確率を求めなさい。 問1枚中の 1枚目一 長岡技術科学大学

回答募集中 回答数: 0
数学 高校生

(2)π/2を代入しなくても③から恒等式で求めてもいいですか?

基本 例題 156 第2次導関数と等式 (1) y=log(1+cosx)" のとき, 等式y" +2e-x=0を証明せよ。 (2) y=euxsinx に対して, y" = ay + by' となるような定数a,bの値を求めよ 10) [(1) 信州大, (2) 駒澤大] 基本 155 指針 第2次導関数 y” を求めるには,まず導関数yを求める。 また, (1), (2) の等式はともに の恒等式である。 (1) y" を求めて証明したい式の左辺に代入する。 また,e-xで表すには、等式 elogp=pを利用する。 (2) y', y” を求めて与式に代入し, 数値代入法を用いる。 解答 (1) y=2log(1+cosx) であるから (1+cos x)' 1+cosx よって よって y'=2・ y" == 2{cosx(1+cosx)−sinx(−sinx)} +(1+cos x)² x£)aies 2 1+cosx 2(1+cosx) (1+cosx) また,=log(1+cosx) であるから 2 ゆえに 2e-2=2 y 1+cos x π 2 e2 y"+2e=¾=—— 2 また, x= 39 てもこれを解いて == 1+cos x 2sinx 1+cosx y"=ay+by' に ①, ② を代入して e2x ...... を代入して +A + (2)y'=2e²sinx+e2xcosx=e2x(2sinx+cosx) y"=2e²x (2 sinx+cosx)+e²x (2 cosx-sinx) =e2x(3sinx+4cosx) ① ゆえに ay+by'=ae²x sinx+be²x (2 sinx+cosx)) =`(²x) =e2x{(a+26)sinx+bcosx} ež=1+cos x 2 1+cos x ③はxの恒等式であるから, x=0を代入して 3e=e" (a+26) =0 【logMk=klogM なお,-1≦cosx≦1と (真数) > 0 から 1+cosx>0 [参考 (2) のy"=ay+by' ように、未知の関数の導 を含む等式を微分方程式 (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... ③ いう(詳しくは p.473 参照 4=b ③が恒等式③に ◄sin²x+cos²x=1 CHURO530 11 [elogp=を利用すると alog(1+cosx)=1+cosx logze REC (e²)' (2 sinx+cos x) +ex (2 sinx+cos.x)' 2 を代入しても成り a=-5, b=4 このとき (③の右辺)=e2x{(-5+2・4)sinx+4cosx}= (③の左辺) 逆の確認。 したがって a=-5, 6=4

回答募集中 回答数: 0
1/3