学年

教科

質問の種類

数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

この問題についてで、写真のことが成り立つので<BCM=<BCNとしてよいでしょうか?回答よろしくお願いします。

戦略 例題 座標平面の設定 ★★☆☆ AB=ACである二等辺三角形ABC を考える。辺 AB の中点を M とし, 辺 AB を延長した直線上に点Nを, AN:NB=2:1 となるようにとる。 このとき,∠BCM = ∠BCN となることを示せ。ただし,点Nは辺 AB 上にはないものとする。 AR (京都大) « Re Action 図形の証明問題は,文字が少なくなるように座標軸を決定せよ IB 例題 95 思考プロセス ・△ABC は AB AC の二等辺三角形 YA |対称性の利用 O ADJ A 対称軸をy軸に設定 ∠BCM と ∠BCN を考える BCをx軸上に設定して、 とすると、 M B C 0 x 関問 戦略 設定 2 直線 NC と MC の傾きを考える AN 95 解 直線 BC をx軸, 辺BCの中点を 原点にとる。 △ABC は AB AC であるから, A(0, 2a),B(-26,0), C(260) (a>0, 6 > 0) としても 一般性を失わない。 YA 34A 2a (8) M A(0, 4), B(-6, 0) のよう At に設定してもよいが,後で -2b BO (2) ① Mは線分ABの中点であり, N は 線分ABを2:1 に外分する点であ NO DA るから M(-b, a), N(-4b, -2a) 26 CABの中点Mを考えると M(-) 分数になってしまうか ら,Mの座標が分数とな らないようにした。 このとき,NC の傾きは m1 = 26-(-4) 36 0+(-2a) a A = 0-a a MCの傾き m2 は m2= 26-(-b) 3b よって, 2直線 NC と MCはx軸に関して対称であるから <BCM = ∠BCN 頭を (別解〕(座標を用いない証明) BM=α とおくと AB = 24, AN = 4a, AC=2a <BAC=0 とおくと, △AMCにおいて, 余弦定理により CM² = a² + (2a)2-2. a. 2acos = 5a² - 4a² cos BA 逆向きに考える ∠BCM = ∠BCN を示す。 CM:CN = MB:BN が示されればよい。 MB:BN=1:2より, CM:CN = 1:2 を示 したい。 また,△ANC において,余弦定理により11/07 CN2 = (4a)²+(2a)2-2.4a 2acos 08 A =20α²-16acost M FO 大 よって、CM:CN=1:4 より <BCM = ∠BCN CM:CN=1:28- したがって、角の二等分線と比の定理の逆により B C ② ① 練習 △OCD の外側にOCを1辺とする正方形 OABC と, ODを1辺とする正方形 このとき、 AD ⊥ CF であることを証明せよ。 (茨城大) 303 p.315 問題1

解決済み 回答数: 1
数学 高校生

確率を求める問題なのですが点を固定して考えないで6^3としてしまいました。この方法ではなぜいけないのか教えて頂きたいです。よろしくお願い致します。

例題 13.2 4/19 半径1の円に内接する正六角形の頂点を A1, A2, ..., Ag とする.これらから, 無作為に選んだ3点(重複を許す)を頂点とする三角形の面積の期待値(平均値)を求 めよ. 2つ以上が一致するような3点が得られたときは,三角形の面積は0と 考える. 【解答】 正六角形A1A2 A3 A4 A5 A6 が内接する円の中心をO とする. A1 2=AAAA BAAAA A2 A6 88-,A,AA A3 A5 A4 無作為に選んだ1つの頂点をA,とし,固定して考える。 65 ※重複を許すので かくりの合計が1にならないことに 注意!! このとき、他の2頂点の選び方の総数は62=36(通り) あり,これ らは同様に確からしい。 車は9 そして、次の4つの場合が考えられる. (ア) 三角形 A1A2A6 と合同な三角形ができる. (イ) 三角形 A1 A3A5 と合同な三角形ができる. (ウ) 三角形A1 A2A4と合同な三角形ができる. (エ) A」 を含めて2点以上が一致する (ア)のとき,他の2頂点について, (A2, A3), (A3, A2), (A2, A6), (A6, A2), (A6, A5), (A5, As) の場合がある. よって, (ア)の確率)= 6 1 36 6 (イ)のとき,他の2頂点について, (A3, A5), (A5, As) の場合があ 対称性から1つの頂点は固定 して, 残り 2頂点の選び方を考 えればよい。 三角形の形で分類しておく. がこの検査 って ((イ)の確率)= 2 36 == 1 18 (ウ)のとき,他の2頂点について, (A2, As), (A1, A2), (Az, As),

未解決 回答数: 1
数学 高校生

数Ⅲの関数のグラフについてです。 lim(x→2√2-0)y’=-∞とlim(x→+0)y’=2√2をもとめるのはなんでか知りたいです。 yの極限ではなく、y’の極限を求めているのは漸近線とは別の目的があるんですか??

110 in 重安 例題 光形 (3) 陰関数 00000 方程式y2=x2(8-x2) が定めるxの関数yのグラフの概形をかけ。200 して 問題における便の 次の 基本 107 108 陰関数の形のままではグラフがかけないから、まずy=f(x)の形にする。そして,こ 指針 れまで学習したように,次の点に注意してグラフをかく。 定義域,対称性,増減と極値,凹凸と変曲点, 座標軸との共有点,漸近線 中でも、この問題では対称性がカギをにぎる。 y2=x2(8-x2) において xをxとおいても同じ→y軸に関して対称 y-yとおいても同じx軸に関して対称 →原点に関して対称 185 解答 ...... 方程式でxを-x に, y を -y におき換えてもy2=x2(8-x2) は成り立つから,グラフはx軸, y軸, 原点に関して対称であ る。よって,x0,y≧0の範囲で考えるとめた内容を確認し y=x√8-x2 ■対称性の確認。 これ により, グラフをか く労力を減らす。 ① 12020 8-x≧0 であるから の 0<x<2√2のとき y'=√8-x2+x 28-x2 0≤x≤2√20 -2x 2(4-x2) 2x√8-x²-(4-x2)・ √8-x2 <y=f(x) の形に変形。 ◄x≥0 4 章 = きない 検討 求めるグラフは, y=x√8-x2 のグラフ 135 関数のグラフ -2x 2√8-x2 2x(x2-12) y"=2. 8-x2 (8-x28x2 とy=-x√8-x2 の y' = 0 とすると,0<x<2√2 では また, 0<x<2√2のとき y" <0 x=2 グラフを合わせたもの とも考えられる(この になる。 しても 更に x-2√2-0 x 0 [図1] x+0. yA 4 2 ... 2√2 2つのグラフは,x軸 0x2√2 における関数 ① の増減、凹凸は左下の表のように関して互いに対称)。 limy'=∞, limy'=2√2 〔図2] y J" 0 + 0 2 4 0 -2√2 O 122 x 0 22√2x よって, 0≦x≦2√2 における関数 ① のグラフは [図 1] のようになる。 T ゆえに、対称性により求めるグラフは [図2] のようになる。 coin A . y軸方向に4倍した

解決済み 回答数: 1
数学 高校生

四角で囲った部分がわからないです(Xの解) 特に二枚目の丸で囲んだ部分はどうしてこういうふうに言えるのかわからないです

354 基本 例題 223 係数に文字を含む3次関数 [類 立命館大] la を正の定数とする。 3 次関数 f(x)=x-2ax2+αxの0≦x≦1 における最大 値M (α) を求めよ。 基本 219 重要 224 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で,極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると,y=f(x) のグラフは右図のよう になる(原点を通る)。ここで, x=/1/3以外にf(x)=f(1/2)を 満たすx (これをαとする) があることに注意が必要。 a よって、1/3,α (/1/<α) が区間0≦x≦1に含まれるかどうか 3' a 3 <a a で場合分けを行う。 y4 f() O a a f'(x)=3x²-4ax+α²=(3x-a)(x-a) 解答 f(x) = 0 とすると x=147, a a 3' a>0であるから,f(x)の増減表は次のようになる。 以上から (x)はx=3 M(a)-( <a<1 すなわ <a< 2 のとき, f(x)はx=1で最大と M(a)=f(1) 0<a M Åsas 3 まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 <a>0から a ・<a ... ゆえに X- a x=/1/3であるから x x f'(x) + a 3 0 f(x) 大 a 0 + 極小 ここで,f(x)=x(x2-2ax+α²)=x(x-a)2から (+)-(-a), F(a)=0 3 27 -α 大 = 12/17 を満たすxの値を求めると, =1/1/3以外にf(x) 4 f(x)=から 4 x³-2ax² + a³x-17 a²=0 x3-2ax2+αx- α=0 (x-3) ( x − 4 27 (*) a)=0 0= CLAQ (*) 曲線 y=f(x) と直線 =は、x=号の y= 点において接するから、 f(x)-27 a³ 13(x- 3次関数の対称性の利目 樹 344 の参考事項で紹 の値を調べることもで 2つの極値をとる点 座標は 信 X=- 83 23 なお、p.344 で紹介 で割り切れる。このこと を利用して因数分解する とよい。 よって 3 -2a a² 0-27 a 5 Q2 3 9 x=- a 5 4 1 a a² 0 よって,f(x)の0≦x≦1における最大値 M (α) は,次のよ うになる。 3 9 13 としておきたい。 a 4 3 9 [1] 1< // すなわち α>3のとき 4 1 a -= M(a)=f(1) f(x)はx=1で最大となり 1 a²-2a+1 O 1 ・最大 大人の方針。 [1]は区間に極値をとる xの値を含まず、区間の 右端で最大となる場合 指針」 a a x 3 222は正の

未解決 回答数: 0
数学 高校生

なぜ青線部のことがいえるのですか?

18 第1章 数と式 標 問 6 式の値 ( 分数式) 19 解答 (1) 2x-y+z=0, x+2y+8z=0より (東亜大) x=-2z,y=-3z よって, ry+y+zx_(-2z)(-3z)+(-3zz+z(-2z) x²+ y²+z2 (-2z)+(-3z)2+22 分数式を1つの文字で表す 2式を連立して, x,yについ て解く (1) 実数x, y, はいずれも0でなく, 2x-y+z=0とx+2y+8z=0 の xy+yz+zx 両方を満たすとき x² + y²+z² の値を求めよ. ytz_z+x+y=mとするときの値を求めよ. (2) 2 I y また,(1+2) (1+72)(1+/-) の値を求めよ. (6-3-2)z2 1 = (東海大) (4+9+1)2214 (2) I 精講 (1) 文字が3つありますが 解法のプロセス 2x-y+z=0, x+2y+8z=0 を利用して, 1つの文字で残り2つの文字を表現 (1) 2c-y+z=0, x+2y+8z=0 xy+yz+zx し、 に代入します. x²+ y²+z² を連立してz,yをを用い て表す. (2) 分数式の値を求める際,その値をとで もおいて考えていくとラクなことが多いのです. ↓ my+yz+x この問題では、問題文でmとおいてあります. +2+2に代入する. I y+z_z+x+y=mより y 2 y+z=mx ①, z+x=my..... ② x+y=mz... ③ ①+②+③ より 2(x+y+z)=m(x+y+z) よって, (x+y+z) (m-2)=0 したがって, x+y+z=0 またはm=2 x+y+z=0のとき, y+z=1=-1 I y+z. =m より y+z=mx ...... ① I +1=mより2+x=my....... ② y 同様に, z+x= y=-1, y y x+y=-=-1 2 2 x+y=mよりx+y=mz... ③ 2 y+z=-x を代入 m=2となるx, y, zが存在 することを主張している なお、m=2のとき ①②よ りェyが得られ、同様に ② ③ より y=z が得られ 解法のプロセス よって, m=-1 y+z_z+x+y=m (2) 2 I y また,r=y=z (≠0) のとき =2となる? したがって,m=-1,2 を y+z=m, 2+1=m y (1+1/2)(1+7)(1+2/)=ty.y+zz+p y Z ytzztexty る I y 2 =m³ =-1, 8 として, ① ② ③を連立してmを求めます. こ のとき,x,y,zの文字を消去していくのも1つ の方針ですが,x,y,zが同等の扱いを受けてい るので(ryやzに対して特別な扱いを受けて いない), x, y, zの対称性を利用して処理するの が簡単でしょう (標問9参照)。 ①+②+③ をつくると 2(x+y+z)=m(x+y+z) (x+y+z) (m-2)=0 が得られます. これから x+y+z=0 またはm=2 となります. I x+y=m 2 と扱って [y+z=mx z+x=my x+y=mz とする. 演習問題 ↓ 6-1 x+4y=y-3.z≠0のとき、 2x²-xy-y² この連立方程式を解く、 2x2+xy+y2 の値を求めよ. (山梨学院大) IC (6-2x+y=y+z=2のとき、この式の値を求めよ。 (札幌大) y 章 1

解決済み 回答数: 1
1/49