学年

教科

質問の種類

数学 高校生

基礎問題精講数1Aのこの問題について質問です。下線部1の「最小公倍数が196だから、14a'b'=196」となる理由と、下線部2の「ここで、最小公倍数をl(エル)とおくとmn=5×l 」となる理由が分かりません。よろしければ誰か教えてくれませんか?

SEPT 第5章 整数の性質 86 最大公約数 最小公倍数 (1) 180 84 の最大公約数と最小公倍数を求めよ. (2)2つの正の整数a,b (a>b) があって, 最大公約数は 14 最 小公倍数は196 である. α, bを求めよ. (3) 2つの正の整数m,n(m>n) があって, 最大公約数は 5. ま たmn=300 である. m, n を求めよ.やろ食 精講 最大公約数 最小公倍数は小学校で習っているなじみのある数学用 語ですが、高校になったからといって意味が変わるということはあ りません。しかし、扱い方が少し高度になります。 (1) 小学校では,右のようなわり算を行って, 最大公約数は 2×2×3=12, 最小公倍数は2×2×3×15×7=1260 と答を求めましたが,ここでは, 素因数分解して, 最大公約数の意味 「2つの数に共通の約数の中で最大のもの」 に従って, 最小公倍数も 「2つの数に共通の倍数の中で最小のもの」 に従って考えます. (2),(3) 数が具体的に与えられていません. そこで, ポイントにかいてある公 式を利用します. ここが, 少し高度になっているところです. 解答 (1) 180=2²×3²×5, 84=2²×3×7 よって, 最大公約数は, 22×3=12 また, 最小公倍数は 2²×3²×5×7=1260 素因数 2 180 2コ 84 2コ 多い方 2コ 少ない方 2コ 3 2コ 1コ コ 1コ 5 1コ 0 コ 1コ 7 07 2)180 84 2) 90 42 3) 45 21 15 7 1コ 1コ→2×3® ×5® x 7® コ 0コ → 2®×3D ◆各素因数について指 数が最小のもの 各素因数について指 数が最大のもの 最小公倍数 最大公約数 (2) 最大公約数が 14 だから,a=14c', b=146' a'b'は互いに素で、α'>' をみたす正の整数) 8 このとき、最小公倍数が196 だから,14q'b'=196① ∴.a'b'=14 143 kot, (a', b')=(14, 1), (7, 2) (a,b)=(196,14), (98,28) (3) 最大公約数が5だから,m=5m'n=5n" m'n' は互いに素で, m'n' をみたす正の整数) ここで, 最小公倍数を!とおくと mn=51 が成りたつので160 : 60=5m'n' よって, m'n'=12 m'n' は互いに素だから (m', n')=(12, 1), (4, 3) tot, (m, n)=(60, 5), (20, 15) 注 1 「α, bが互いに素である」 とは, aとbが1以外の共通の約数を もたないことです。 注m'n') (6, 2) のとき, a=30, b=10 となり, 最大公約数は 5ではなく, 10 になってしまいます。 ポイント 演習問題 86 (6,2) は互いに素で ないので不適 2つの正の整数a,bの最大公約数がg, 最小公倍数が のとき ① a=a'g,b=b'g (α' と'は互いに素)と表せ , ②l=α'b'g, ab=gl が成りたつ (1) 12,3660の最大公約数と最小公倍数を求めよ. (2) 2つの正の整数a,b (a>b) があって, 最大公約数は12で最 小公倍数は144 である. α, bを求めよ。 (3) 2つの正の整数m,n (m>n) があって, 最大公約数は4で,積 は 160 である. m, n を求めよ。 第5章 PIC・COLLAGE

回答募集中 回答数: 0
数学 高校生

基礎問題精講 数学Ⅲ 132の問題の質問です 赤線を引いた2つの式の途中計算を知りたいです。 特に一つ目は何が初項で何が公差で何が項数なのか詳しく知りたいです よろしくお願いします

132 3つの不等式x≧0 y≧0, 2x+y≦n (nは自然数) で表さ れる領域をDとする。 (1) Dに含まれ,直線x=k (k=0, 1, ..., n) 上にある格子点 (x座標もy座標も整数の点)の個数をk で表せ. (2) Dに含まれる格子点の総数をnで表せ. 精講 Σ計算の応用例として, 格子点の個数を求める問題があります。こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように, nが入ってくると数える手段を知ら ないと解答できません. その手段とは, ポイントに書いてある考え方です. ポイントによれば,直線y=kでもできそうに書いてありますが, こちらを 使った解答は (別解) で確認してください . 解 答 2n-2k4123 (1) 直線 x=k上にある格子点は +17²2 2n |x=k (k, 0), (k, 1), , (k, 2n-2k) の (2n-2k+1) 個. 2n-2k --- 注 y座標だけを見ていくと, 個数がわかります. 0 IC (2) (1)の結果に, k=0, 1, ...,n を代入して, すべ て加えたものが, D に含まれる格子点の総数. n (2n-2k+1) ● 等差数列 k=0 n+1 -{(2n+1)+1} 等差数列の和の公式 2 100 =(n+1)^ ADERESSJ 注 Σ計算をする式がんの1次式のとき, その式は等差数列の和を表 しているので,17/02 (atan) (11) を使って計算していますが,もち n n ろん, 2 (2n+1)-2 Σk として計算してもかまいません。 k=0 k=0 n

回答募集中 回答数: 0
1/3