学年

教科

質問の種類

数学 高校生

1枚目のマーカー部分の問題が分かりません。なぜ定義域の中心の値はa+1/2なのでしょうか。まずこの関数の定義域が分かりません。そしてこの問題はなぜいろいろ定義域を使って考えるのですか?根本から問題の解き方がわかりません。回答よろしくお願いします🙇🏻‍♀️

例題22 定義域が動く場合の最大・最小 解答 第2節 2次関数の値の変化 49 針■■■ 辺の長さをyとして aは定数とする。 関数 y=x²-2x+1 (a≦x≦a+1) の最小値を求 めよ。 考え方 定義域の幅は1で一定で,αの増加とともに定義域全体が右に移動する。 (解答) グラフが下に凸のとき,軸に最も近いxの値で最小値をとる。 これより,軸x=1の位置について以下のように場合分けをする。 [1] 定義域の右外 [2] 定義域内 [3] 定義域の左外 y=x²-2x+1を変形すると y=(x-1)2 よって、この放物線の軸は直線x=1, 頂点は点 (1, 0) である。 また x=αのときy=α2-2a+1, x=a+1のときy=a² [1] α+1 <1 すなわち a<0 のとき x=α+1で最小値 α2 [2] a≦1≦a+1 すなわち 0≦a≦1のとき x=1で最小値 0 [3] 1 <a のとき x=αで最小値α² -2a+1 第3章 2次関数 2辺の長さの和が12 角をはさむ2辺の 方の定理よりを 最小値を 辺の一方の長さ である。 0から yとすると すると x+144 1+72 あるから. 最小値 から も最小となる める最小値 E a a+1 [2] y [3] と同様に が大変であ 0a 1 0 1 a a+1 x a+1 =1より x2+y2 ? 163aは定数とする。 関数 y=x2-4x+3 (a≦x≦a+1) について,次の問いに 答え *(1) 最小値を求めよ。 * (2) 最大値を求めよ。 (3) (1) で求めた最小値を とすると は αの関数である。この関数のグ ラフをかけ。 (4)(2)で求めた最大値をMとすると,Mはαの関数である。この関数のグ 2+ y² 1± y=] x= 3=0 xy ラフをかけ。 ヒント 163 (2) 軸が定義域の中央より右, 中央, 中央より左で場合を分ける。

未解決 回答数: 1
数学 高校生

⑵において x=-2で不連続にはならないのですか?

10 重要 例題 57 級数で表された関数のグラフの連続性 x x x 無限級数 x+ 1+x (1+x)2 + ++ について (1+x)-1 00000 (1)この無限級数が収束するようなxの値の範囲を求めよ。 (2)xが(1)の範囲にあるとき,この無限級数の和を f(x) とする。 関数 y=f(x) のグラフをかき, その連続性について調べよ。 a=0 または |r|<1 基本 36,56 指針 無限等比級数atar +are +.....の収束条件は a 収束するとき, 和は a = 0 なら 0, αキ 0 なら 1-r (2)まず, f(x) を求める。 次に, グラフをかいて,連続性を調べる。 なお,関数 y=f(x)の定義域は,この無限級数が収束するようなxの値の範囲[(1) で求めた範囲] である。 (1)この無限級数は,初項 x, 公 解答 比 の無限等比級数である。 1+x 収束するための条件はx=0 ■ ( 初項) = 0 ↓では ・1 O x または-1<x<1 ... ① -1<(公比)<1 ない! ・1 不等式① の解は, 右の図から x<-2,0<x 1 <y= 1 1+x のグラフと y= 1+x よって, 求めるxの値の範囲は x<-2,0≦x (2) 和について x=0のとき f(x)=0 x<-2,0<xのとき 直線 y= 1, y=-1の上 下関係に注目して解く。 なお, ① の各辺に (1+x) (0) を掛けた -(1+x)²<1+x<(1+x)² を解いてもよい。 (初) 1 - (公比) -2-10-(mil y=1+x x 連続性は定義域で考える ことに注意。 −2≦x<0 f(x)は定義されない から,この範囲で連続性 を調べても無意味である x f(x)= =1+x 1. 1- 1+x 関数 y=f(x)の定義域は 0 x<-2,0≦xで, グラフは右 の図のようになる。 よって x<-2,0<xで連続; x=0で不連続 練習 次の無限級数が収市す 91-2はちがうのか? f(r)のグラス

未解決 回答数: 1
数学 高校生

至急です 数ⅠAの問題です エからが分かりません 誰か教えてください

| 104 | 数学ⅠA実戦問題 実戦問題 5 ★★☆ 制限時間15分 (1)辺の長さが等しい正方形と正三角形を、1つの辺で貼り合わせてできた多角形の辺り はア ] である。 また、辺の長さが等しい正六角形と正三角形を,1つの辺で貼り合わせ してできた多角形の辺の数はイである。 (2) 太郎さんと花子さんは,面が合同な正多角形である2つの正多面体を, 1つの面で貼り 合わせてできる多面体について話している。 太郎: 例えば, 2つの正四面体を貼り合わせてできる多面体の面の数は、2つの正四 面体の面の数の和から貼り合わせた面の数を引けばよいからウだね。 花子:他の2つの正多面体の組み合わせでも同じことがいえるのかな。 太郎:右の図のように,正八面体 ABCDEF と正四 面体 ABCG を貼り合わせたとき,△ABGと △ABEは1つの平面上にあるように見える ね。 花子:確かめてみよう。 △ABC の定める平面と △ABG の定める平 方針に 面のなす角をα △ABCの定める平面と 太郎さんが △ABE の定める平面のなす角をβとしたと E B F G I が成り立てば △ABG と △ABEは1つの平面上にあるといえるね。 また、き オ [キク 太郎 : cosa= cos β= I であるから, が成り立つね。 数学Ⅰ・A 同様に,4点 A,D, C, G 4点B, F, C, G も1つの平面上にあるから, 正八面体と正四面体を貼り合わせたとき,面の数は だね。

回答募集中 回答数: 0
1/1000