学年

教科

質問の種類

数学 高校生

数Ⅰ関数です。(2)の解説お願いします

重重要 例題 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると き、次の関数のグラフをかけ。 (1) y=f(x) 指針 ((2) y=f(f(x)) 20 (0≦x<2) f(x)=1 8-2 (2≤x≤4) 定義域によって式が変わる関数では,変わる 境目のx,yの値に着目。 (2)f(f(x))はf( f(x)<2のとき f(x)を代入した式で, 2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,f(x)<2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 解答 (2)f(f(x))={2 [2f(x) (0≤f(x)<2) 8-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 25 f(f(x))=2f(x)=2・2x=4x f(f(x))=8-2f(x)=8-2・2x =8-4x (p+d 2≦x≦3のときf(f(x))=8-2f(x)=8-2(8-2x)/ =4x-8 3<x≦4のとき f(f(x)) =2f(x)=2 (8-2x) Pry) 220=16-4x4 よって,グラフは図(2) のようになる。 (1) YA 4 すわ(2) YA 変域ごとにグラフをかく。 (1)のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0f(x)<2 また、 1≦x≦のとき, f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため、 (2) は左 の解答のような合計4通 りの場合分けが必要に なってくる。 2 0 1 20 I 3 4 でおし X 0 1 2 3 4 X 移動の くこともできる。 8から2倍を 引く 123

回答募集中 回答数: 0
数学 高校生

数Ⅰ関数です。(2)の解説お願いします

重要 例題 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると き、次の関数のグラフをかけ。 (1) y=f(x)(2 y=f(f(x)) 指針 00000 123 200 (0≦x<2) f(x)=1 8-2(2≦x≦4) 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2)f(f(x))はf()のxにf(x) を代入した式で, f(x)<2のとき 2f(x) 2f(x)4のとき 8-2f(x) (1) のグラフにおいて,f(x)<2となるxの範囲と, 2≦f(x) 4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (0≤f(x)<2) [8-2f(x) (2≦f(x)≦4) 「2f(x) 解答 (2) f(f(x))= よって, (1) のグラフから 0≦x<1のとき 変域ごとにグラフをかく。 20 (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 f(f(x))=2f(x)=2・2x=4x 1≦x≦3のとき 1≦x<2 のとき f(f(x)) =8-2f(x)=8-2.2x =8-4x 大 2≦x≦3のときf(f(x))=8-2f(x)=8-28-2x)/ 移動 =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 7153) 229)=16-4x よって, グラフは(2)のようになる。 (1) すわ(2) y YA もから y=ax 2≤f(x)≤4 3<x≦4のとき 0f(x)<2 ① また 1≦x≦3のとき f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため, (2) は左 その解答のような合計4通 りの場合分けが必要に なってくる。 0 でお 1 2 3 4 18 0 1 2 3 4 X X 町 8から2倍を ともできる 引く

回答募集中 回答数: 0
数学 高校生

この問題がよくわかりません 解説お願いします🙇‍♀️

"2 重要 例題 40=f(n) an-1型の漸化式 a1= 2' (n+1)an=(n-1) an-1 (n≧2) によって定められる数列{an} の一般項 00000 を求めよ。 [類 東京学芸大 指針 与えられた漸化式を変形すると an= n-1 n+1 -an-1 これは p.471 基本例題39に似ているが,おき換えを使わずに,次の方針で解ける。 〔方針1] an=f(n) an-1と変形すると これを繰り返すと an=f(n){f(n-1)an-2} an=f(n)f(n-1)...... f(2)a₁ よって,f(n)f(n-1)(2)はnの式であるから, an る。この形に変形できれば [方針2〕 漸化式をうまく変形して g(n)an=g(n-1)an-1 の形にできないかを考え g(n)an=g(n-1)an-1=g(n-2)an-2=.....=g(1)a が求められる。 まと 代表的な ① 等差 ②等比 3階 ant an であるから, an = g(1)a g(n) として求められる。 (S+α) (I+s) 解答 1. 漸化式を変形して (S) 解答 n-1 an= n+1 an-1 (n≥2) n-1 Pan an-1 n+1 n-1 n-2 ゆえに an= • n+1 n an-2 (n≥3) (+) (+) n-1 n-2 . n+1 n n-1 n-2 an-2 これを繰り返して n-1.n-2n-3321 n+1 n an= • . n-3 n+1 n n1 5 4 3 a1 an-3 n-1 2.1 よって 109 an= (n+1)n 2 すなわち an= 1 n(n+1) ① n=1のとき 11+1)=1/2 1.(1+1) 12 a₁ = 2 であるから,①はn=1のときも成り立つ。 解答 2. 漸化式の両辺に n を掛けると よって したがって +1)nan=n(n-1)an(≧2) (n+1)nan=n(n-1) an-1=......=2・1・α=1 an= n(n+1) これは n=1のときも成り立つ。 nを掛ける。 n+1とn-1の間にあ 数列{(n+1)nan} は, す べての項が等しい。 a D 5

未解決 回答数: 1
数学 高校生

回答の[2]a=-3のときについてですが、 なぜ3点が重なっているのに「放物線と円が1点で接する場合」になるのですか??

重要 104 放物線y=x2+αと円x+y2=9について, (1)この放物線と円が接するとき,定数αの値 (2) 異なる4個の交点をもつような定数αの値の範囲 指針 放物線と円の共有点についても,これまで学習した方針 共有点 実数解 接点重解 で考えればよい。 この問題では,xを消去して, yの2次方程式 (y-a)+y2=9の 実数解, 重解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1) 放物線と円が 接するとは,円と放物線が共通の接線をも つことである。この問題では,右の図のように, 2点で接する 場合と1点で接する場合がある。 (2) 放物線を上下に動かし, (1) の結果も利用して条件を満たす αの値の範囲を見極める。 (1) y=x+αから (y-a)+y=9 1点で 接する 2点で接する xを消去すると,yの2 次方程式が導かれる。 ゆえに3≦y≦3. ② [2] a=-3 4 a=3 a=-37 [1] 2 YA 3 A 3 3- WA 基本9 PRON D 1418-1 とき したがって と円が 1つの実数を put. NO (1) の式を よって、+370 ついて 3g 30から x 13. X -30 (-3)=-3-a>0 /3 -3 -3| の共通範囲を求め x2=y-a これをx+y=9に代入して 解答 よって y2+y-a-9=0 ① ここで,x2+y2=9から [1] 放物線と円が2点 で接する場合 x2=9-y20 2次方程式 ① は②の 範囲にある重解をもつ。 よって、 ①の判別式を -3 13 0 -3 Dとすると D=0 D=1²−4·1·(—a—9) 37 4 =4a+37 37 であるから このとき, ①の解は y=- となり,②を満たす。 4a+370 すなわち α = - + 4 2次方程式 2 [2] 放物線と円が1点で接する場合 図から, 点 (03) (03)で接する場合で a=±3 以上から、 求めるαの値は 37 a=- ±3 4 by2+qy+r=0 の 重解は y=- 2p 頂点のy座標に注 20共有点を考え であるから、右の と直線2gが援 データとして、 -3

未解決 回答数: 1
数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

解説をみてもよくわかりません 解説お願いします

-20 基本例 例題 54 平面上の点の移動と反復試行 右の図のように,東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点P を通る確率を求めよ。 ただし,各交差点で, 東に行くか, 北に行くかは等確率と し,一方しか行けないときは確率1でその方向に行くも のとする。 A 基本 52 重要 55 指針 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から, これは,どの最短の道順も同様に確からしい場合の確率で,本間は道順によって確率 5C2X2C2 7C3 とするのは誤り! 00000 P B 重要 右図の 出たら 別に 「たら れぞ Aは う確 金 が異なる。 例えば, A111→ →→P→→ Bの確率は C D P B 11 1 ・1・1・1・1= 222 A→1→11P 11 Bの確率は 111 11 1 ・1・1= A 2 2 2 22 32 XUS したがって,Pを通る道順を, 通る点で分けて確率を計算する。 右の図のように,地点 C, D, C′', D', P'をとる。 解答 P を通る道順には次の3つの場合があり,これらは互いに 排反である。 D P B C D' P' [1] 道順 A→C→C→P この確率は 1/2x/121x1/2×11=(1/2)=1/1/2 A [2] 道順 A→D→D→P この確率は sc.(1/2)(1/2)x1/2×1=3 (1/2)=1/4 3 16 [3] 道順 AP′'→P [1] ↑↑↑→→と進む。 [2] ○○○と進む。 この確率はC(1/1) (12/12 × =6 6 2 32 よって、求める確率は 1 3 6 + 16 8 16 32 32 ○には,1個と 12個が 入る。 [3] 〇〇〇〇と進む。 ○には、2個と12個が 2 入る。 練習 右の図のような格子状の道がある。スタートの場所か ③ 54 端で表が出たときと,上の端で裏が出たときは動かな いものとす み,裏が出たら上へ1区画進むとする。ただし,右の 表が出たら右へ1区画進 ら出発し,コインを投げて, ゴール A 解答

回答募集中 回答数: 0
数学 高校生

この問題がわかりません 解説お願いします🙇‍♀️

重要 例題 218 4次関数が極大値をもたない条件 00000 関数f(x)=x4-8x3+18kx2 が極大値をもたないとき, 定数kの値の範囲を求め よ。 XAS 4次関数 f(x) x=pで極大値をもつ [福島大] 基本 211,214 x Þ f'(x) + 0 f(x) 極大 \ x=pの前後で3次関数f(x)の符号が正から負に変わる であるから、f'(x)の符号が「正から負に変わらない」条件を 考える。 3次関数f(x) のグラフとx軸の上下関係をイメー ジするとよい。 なお、解答の右横の図はy=x(x2-6x+9k) のグラフである。 f'(x)=4x-24x2+36kx=4x(x2-6x+9k) f(x) が極大値をもたないための条件は, f'(x) = 0 の実数 解の前後でf'(x) の符号が正から負に変わらないことであ ある。このことは, f'(x)のx3の係数は正であるから, 3次 方程式 f(x) = 0 が異なる3つの実数解をもたないことと 同じである。 k≥1 y k>1 k=1 347 3 x 解答 f'(x) = 0 とすると x=0 または x2-6x+9k=0 よって, 求める条件は,x2-6x+9k=0が k=0 y [1] 重解または虚数解をもつ [2] x=0 を解にもつ [1] x2-6x+9k=0 の判別式をDとすると D≤0 1-k≤0 35 12121=(-3)2-9k=9 (1-k) であるから 求め方は よって k≧1 [2] x2-6x+9k=0に x=0を代入すると k=0 したがって k=0, k≧1 おける関数の 6 x I 一般に, 4次関数 f(x) [4次の係数は正] に対し、f'(x)=0 参考 [4次関数の極値とグラフ] 3次方程式で,少なくとも1つの実数解をもつ。 その実数解をαとし、他の2つの解が実数 あればβ, y とする。このとき, y=f(x) のグラフは、次のように分類できる。 特に, 極大値を るのは①の場合だけである。 あり ける 小が入れ替わる)

未解決 回答数: 0
数学 高校生

(2)の問題で解がともに1より小さいときなぜa-1+b-1が0より小さくなるのか理解できません またなぜa-1 b-1と置くのでしょうか

x2-4 x x x2-4 B 2 x-2 x X x ÷ x (x+2)(x-2) x-2 x 北 x-2 x × x-2 =x+2 よって (2) HC (x-1) xx4(x+2)(x-2) x- X 別解 B 2 x-2 1. 1- xx X x =x+2 x-2 3 2次方程式2mx+2m²-5=0が,次のような異なる2つの解をもつとき,定数の値の範囲を求めよ。 【重要】 (1) ともに1より大きい (2) ともに1より小さい この2次方程式の2解をα, B, 判別式をDとする。 1/2=(m)-1-(2m²-5)=m+5=-(m+√5)(m-√5) また,解と係数の関係により α+β=2m, aβ=2m²-5 (1) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, AAI 直線 よ ①ゆよ y (-1)+(β−1)>0 かつ(α-1XB-1)>0 D>0より -(m+√5)(m-√5)>0√5 <<√5 ... ① また (α-1)+(β-1)=(a+β)-2=2m-2 (α-1)β-1)=αβ-(a+β)+1=(2m²-5)-2m+1=2(m-m-2)=2(m+1Xm-2) *E**** (α-1XB-1)>0より2(m+1Xm-2)>0 (−1)+(β-1)>0より 2m-2>0 よってm>1 よって効く-1,2m ③ ① ② ③ より 2<<√5 (2) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, (-1)+(β−1)<0 かつ (α-1Xβ-1)>0 D>0より -√5cm<√5 (−1)+(β−1)<0 より 2m-2<0 よって1 (a-1X8-1)>0) m<-1, 2<m (3) ① ② ③ の共通範囲を求めて -√5 <<-1 次の3次方程式を解け 4x+8=0 P(x) =42+8 とすると P(2) =23-4-23+8=0 *** 0 -√5 -1 1 2√√5 m -√5-1 D- 12.5m x よって、P(x) は x2 を因数にもち P(x)=(x-2)(x-2x-4)

回答募集中 回答数: 0
1/141