学年

教科

質問の種類

数学 高校生

場合分けが分からないので 詳しく解説お願いします

基 本 ! 例題 90円と直線の共有点の個数 点と直線の距離の利用 円 x2+y2=5と直線 2x-y+k=0 の共有点の個数は,定数kの値によって, どのように変わるか調べよ。 ・ CONSOPO CHART & GUIDE 円と直線の位置関係 点と直線の距離の利用 ①円 円の中心と直線の距離をd, 円の半径をrとすると, 次のことが成り立つ。 d<r ⇔ 異なる2点で交わる ( 共有点2個) d=r ⇔ 接する (共有点1個) (共有点 0 個) dr⇔共有点をもたない 円の中心と直線の距離 dを求める。 距離dと円の半径rを比較したのとる値で場合分けして答える。 解答 円の半径は r= √5 円の中心 (0,0)と直線の距離dは 2-0-0+kk 2²+ (−1)² √5 d= ! d<r となるのは |k| √5 IN d = r となるのは これを解いて すなわちん <5のとき。 SAT これを解いて <√√5 -5<k<5 |k| | LO √5 k=±5 k √5 YA/y=2x+k/ O k 15 √5 -5 =√5 すなわち|k|=5のとき。 √√5 d> となるのは これを解いて k<-5,5<k- 以上から, 共有点の個数は -5<k<5のとき2個; >√5 すなわち k>5のとき。 k=±5のとき1個; k <-5,5くんのとき0個 x ....... r = 5 ではない! ◆点 (x1, y1) 直線 ax+by+c=0 の距離 は -d<r d=r d>r ax₁+by₁+c √a² + b² 絶対値を含む 方程式・不等式 c>0 のとき |x|=c の解は x=±c |x|<cの解は円(s) -c<x<c |x|>c x<-c, c<x SPRATI X

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!答えを書いていたのですが、見返したら線を引いたところが分かりません!間違えているかもしれません💦解説お願いします🙇🏻‍♀️

youth 6 ある高校の生徒会では,文化祭で Tシャツを販売し,その利益をボランティア団体に寄 付する企画を考えている。生徒会執行部としては,できるだけ利益が多くなるように価格 を決定したい。価格は「製作費用」と「見込まれる販売数」をもとに決めるが, 販売時に釣 り銭の処理で手間取らないよう50の倍数の金額(単位は円) とする。 (1) (売上額)=(Tシャツ1枚の価格)×(販売数)なので, Tシャツ1枚の価格をx円,こ のときの販売数をy枚とし、xとyの関係を調べることにした。 生徒会執行部が実施したアンケート調査の結果, 価格が2000円では50枚, 500円では 200枚売れることがわかり, さらに500≦x≦2500 の範囲では, 販売数は価格xの1 250 アイ-1 x+ オカキ である。 ウエ 次関数とみなせることもわかった。 このとき, y= 以下,500≦x≦2500 の範囲で考える。 (2) Tシャツ1枚の価格をx円としたときの売上額をS(x) とするとき, 売上額 S(x) が 最大になるxの値を求めよ。クケコサ 1250 (3) Tシャツ1枚当たりの「製作費用」が400円の業者に 120枚を依頼することにした とき,利益が最大になる Tシャツ1枚の価格を求めよ。 シスセソ 円 1300 (1) y=axteに代入して 2000 ath=50) 500 ata=200② 2000ath280 - 20000+4=800 =250を②に代入して、 したがって、y=-x+250 5000=-50 -32=-750 h=250 √(x)=天y=x(1+250) - 1/6/2² +250 X - To (x²-2500x) == -- to {(x-1250) ²- (12501²³} 2 - (√6 (1-1250) ² + + 6. (1250)² a=-to よって、x=1250は500≦x≦2500にあるので、 あてはまる。

回答募集中 回答数: 0
数学 高校生

媒介変数表示の曲線の場合に、写真2枚目のθ=0など、 f'(x)=0でないところで値がどうなるかを考えるのはなぜなのでしょうか。また、その値はどのように決めるのでしょうか。 一枚目などの問題では、そのような条件が増減表に示されてないため、考えるときとそうでないときの違いも教... 続きを読む

00000 基本例題 241 定積分で表された関数の最大・最小(1) ~2x≦2のとき、関数f(x)=f'(r)e" dt の最大値・最小値と、そのときの 基本 239,240 の値を求めよ。 指針 dxf.g(t)dt=g(x) を利用すると,導関数f(x) はすぐに求められる。 よって、f(x) の符号を調べ、増減表をかいて最大値・最小値を求める。 なお、極値や定義域の端でのf(x)の値を求めるには、部分積分法により定積分 (1-t)e' dt を計算して, f(x) を積分記号を含まない式に直したものを利用するとよい。 解答 f'(x)=0 とすると x=±1 よって, f(x) の増減表は次のようになる。 -2 -1 1 0 0 極小極大ゝ また S'(x)=&S(1-t)dt=(1-x*)ex 241 x f'(x) ゆえに したがって - f(x)=S+(1-t) (e^*)'dt =[(1-1"erl +2f, te'dt =(1-x*e* 1+2([terl-Serat) f(2)=1-e² ここで, f(-2)<f(1) であり, f(-1) f(2) の値を比較すると =(1-x2)ex-1+2xex-2(ex-1) =(-x²+2x-1)ex+1 =1-(x-1)'ex よってf(-2)=1-123, f(-1)=1-4, f(1)=1, 9 f(-1)-f(2)= e-4>0 e + f(-1)>f(2) x=1で最大値1, x=2で最小値1-² 2 1 から、f(x)の特号 符号と一致する。 部分積分法 (1回目)。 部分積分法(2回目)。 <S²4-[~ I =8²-1 最大・最小 との値をチェック 増減表から、最大値の候補 は (-2), f(1) 最小値の候補はパール から) ∫(x)=e'costdt (OMx2x)の最大値とそのときのxの値を求めよ。 Ian Ca

回答募集中 回答数: 0