学年

教科

質問の種類

数学 高校生

このプリントが学校の数1の予習で出ているのですが、(1)以外全く分からないため手の付けられない状態です。問題にバツが着いている所以外とプリントの真ん中に書いてある問題の解説をお願いします。

数学Ⅰ 第3章 2次関数 第1節 2次関数とグラフ 事前課題プリント3(教科書p.86 ~p.87) ※事前に教科書の該当ページをよく読み、自分なりの答えを考えて授業に挑みましょう。また、分からない場合は何が分からない 授業の最初にグループ内で、以上の2点を発表し説明できるように準備をして授業に参加してください。 (1) y=2x2 のグラフをx軸方向に1, y 軸方向に2だけ平行 移動した式を求めましょう。 (1)g=21x-132 (2) 関数 y=f(x) の座標を何点か考えると (0,f(0)), (1,f(1)),(2,f(2)),(3,f(3)), (4,f(4)) となる これらを,例えばx軸方向に 1, y 軸方向に2平行移動させると (1,f(0)+2), (2,(1)+2),(3,(2)+2),(4,f(3)+2), (5,(4)+2) となる これより,y=f(x) をx軸方向に1, y 軸方向に2平行移 動したグラフはv=f(x-△) と表すことができる。 ○と △に入る数字を求め、理由を説明しましょう。 y=21-1)22 (2)y=f(x)を {} 7174 y→ +P 9 と平行移動するとy-9=f(x-p)になる この公式を用いたやり方と、頂点に注目する やり方の2通りで平行移動後の玉の求め方 説明しょう。 (3)① y=x^2+4x1をそ 77+1 (2) を参考に,一般的な関数 y=f(x) をx軸方向に 軸方向に平行移動した式がどのような式になるか説明しま しょう。 y→+2 77-2 (4) y=x2-4x+5 を次のように移動した式がどのような式 になるのか求めましょう。 14 ① 頂点の座標を求め、 グラフの向き (aの値)に注意しましょう。 ② ★x軸に関して対称移動 ③ y軸に関して対称移動 ③原点に関して対称移動 (5) (5) y=f(x)に関して、次の各式は①x軸に関して対称移動 ②y軸に関して対移動 ③ 原点に関して対称移動した後の 式を表す。 どの式が ①~③のどれに当てはまるのか説明しま しょう。 -y=f(x) y= f(-x) -y=f(-x) (6)(5)を用いて,(4)の問題に答えましょう。

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 ( 1)を判別式で解いたのですが 答えの範囲が出てきませんでした。 判別式で解く方法で教えてください。

実戦問題 13 2次方程式の解の存在範囲 mを定数として, 2次方程式x+2(m+2)x+2m+12 = 0... ① について考える。友 (2) 方程式 ①が2より大きい解と2より小さい解を1つずつもつとき, m の値の範囲は m<オカである。 (1)方程式 ①が異なる2つの正の解をもつときの値の範囲は アイ <m< ウエ である。 (3) 方程式 ①が1と2の間、2と3の間にそれぞれ解を1つずつもつとき,mの値の範囲は 解答 (1) f(x)=x+2(m+2)x+2m +12 とおくと f(x) = {x+(m+2)}2-(m+2)^+2m+12 =(x+m+2)-m²-2m+8 @ 方程式 ①が異なる2つの正の解をもつとき, y = f(x) のグラフは次 の (i)~ (iii) を満たす。 キクケ コ <<サシ y=f(x)のグラフは頂点が (-m-2, -m²-2m+8) であり、下に凸の放物線であ ( f (1 Key 1 (i) x軸と異なる2点で交わる。 y=f(x) (不 (ii) 軸が x > 0 の部分にある。 (iii) f(0) > 0 (i)より, 頂点のy座標は負であるから m²-2m+8< 0 0 f(0) 2次方程式 ① の判別式を考え O x D -m-2 4 = (m+2)² − (2m+12) > よって,m²+2m-80より (-2)(+4)>0 としてもよい。 ゆえに m<-4, 2<m (ii)より, 軸について x=-m-2> 0 ゆえに m<-2 C (Ⅲ)より,f(0) =2m+120 であるから m>-6 (i) ~ (Ⅲ)より, 求めるmの値の範囲は -6<m<-4 (-6-4-2 2 m (2) 方程式①が2より大きい解と2より小さい解をもつとき,y=f(x) y=f(x) のグラフは下に凸 Key 1 のグラフはf(2) を満たす。 f(2) = 6m+24 < 0 ゆえに m<-4 y y=f(x) 放物線であるから, f (2) <0 満たせば、必然的にx>2 範囲とx<2の範囲のそれ れにおいて, 1度ずつx軸と わる。 Key (3) 方程式 ①が1と2の間,2と3の間にそれぞれ 解を1つずつもつとき,y=f(x) のグラフは次 の (iv) ~ (vi) を満たす。 (iv) f (1) > 0 (v) f(2) <0 (vi) f(3)>0 (iv) より f(1) = 4m+170 であるから (v)よりf(2)=6m+24< 0 であるから 17 m>- 4 (vi) よりf(3) = 8m+33> 0 であるから (iv)~ (vi) より, 求めるmの値の範囲は - m <-4 攻略のカギ! y=f(x) 2 1 3 x m>- 388 33 33 <m<4 17 33

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。教えて下さい。

実戦問題 10 軸が変化する2次関数の最大・最小 αを定数とする。 2次関数 f(x) = x +2ax+3α² 4 の区間 0≦x≦4 における最大値を M, 最小値を とする。 (1)a=1のとき,M = ア m= イウ である。 (2) 放物線y=f(x) の頂点の座標は α<キクのとき M=ケ I a. a² 力 であるから,最大値 M は コ a≧ キクのとき また, 最小値 mは M = サ a² + a+ スセとなる。 a<ソタ のとき m= チ a² + ツ α+[テト] ソタ ≦a<ナ のとき a≧ナのとき m= a² m = ネ a² - となる。 (3)αの値が変化するとき、 M-mは α = ハヒ のとき最小値フ をとる。 解答 (1) α = -1 のとき f(x)=x²-2x-1=(x-1)2-2) よって, f(x) は区間 0≦x≦4 において> y=f(x) 7 放物線y=f(x)の頂点の座標は (-a, 2a²-4) (S-1) Key 1 区間 0≦x≦4 の中央の値はx=2であるから, f(x) の区間 0≦x≦における最大値 M は (i) -a >2 すなわち a < 2 のとき M = f(0)=3a²-4 (ii) -α ≦2 すなわち a≧-2 のとき M = f (4) = 3a² +8a+ 12 次に,f(x)の区間 0≦x≦4 における最小値mは 最大値 M = f(4) = 7, 最小値 m = f(1) = 2x8+z(+5) (2) f(x) = (x+α) +2a2-4 と変形できるから 01 -1 4x -2 (i) y y=f(x)! Key 1 (!!!) -α > 4 すなわち α < 4 のとき O 2T4 a (ii) YA y=f(x) PA m=f(4)=3a² + 8a +12 (iv) 0 <la≦4 すなわち -4 ≦a <0 のとき m=f(-α)=2a2-4 (via すなわち a≧0 のとき m = f(0)=3a²-4 (3)(2)(i)~(v) より, M-mの値は M-m4 01 (ア) a <-4のとき M-m=3a²-4-(3a²+8a +12) =-8a-16 (イ) -4 ≦a <-2 のとき M-m=3a²-4-(2a²-4) = a² (ウ) −2≦a <0 のとき M-m=30°+8a + 12 - (2α-4) = (a+4)2 (エ) a≧0 のとき M-m=3a²+8a+ 12-(3a²-4) = 8a+ 16 (ア)~(エ)より, M-mのグラフは上の図のようになる。 グラフより, M-mは a=-2 のとき 最小値 4 () a 12 4 x y=f(x) 0 44X a 16 (iv) y y=f(x) 0 a 4 x (v) y 2 0 a y=f(x) a0 4 X 6

回答募集中 回答数: 0