学年

教科

質問の種類

数学 高校生

(2)で、 排反と独立の違いがよくわかりません。 横の「検討」を読んでもいまいちなので教えてください。

袋Aには赤玉3個と青玉2個, 袋Bには赤玉7個と青玉3個が入っている。 基礎 ある確率を求めよ。 ((2) 袋Aに白玉1個を加える。 袋Aから玉を1個取り出し, 色を確認した後, (1) 袋Aから 1個, 袋Bから2個の玉を取り出すとき, 玉の色がすべて同じで もとに戻す。これを3回繰り返すとき, すべての色の玉が出る確率を求めよ。 基本47 解答 指針 (1) 袋 A, B からそれぞれ玉を取り出す試行は 独立である。 玉の色がすべて同じとなる場合は、次の2つの排反事象に分かれる。 [1] A から赤1個, B から赤2個 [2] A から青1個, Bから青2個 それぞれの確率を求め,加える(確率の加法定理)。 (2) 取り出した玉を毎回袋の中に戻す(復元抽出)から,3回の試行は独立である。 赤,青,白の出方(順序)に注目して、排反事象に分ける。 排反, 独立 排反なら 確率を加える 独立なら 確率を掛ける Ja (1) 袋Aから玉を取り出す試行と, 袋Bから玉を取り出 す試行は独立である。 [1] 袋A から赤玉1個, 袋Bから赤玉2個を取り出す 3. 7C₂3 21 21 5 10C2 -x. = X 5 45 75 [2] 袋 A から青玉1個, 袋B から青玉2個を取り出す G 場合,その確率は10C2 [1], [2] は互いに排反であるから, 求める確率は 28 23 求める確率は21 + 75 75 75 (2) 3回の試行は独立である。 1個玉を取り出すとき、赤 B... 場合, その確率は **FORD 2 3C2122 3 2 5 45 75 X = 321. 666 = . (*) X 3P3 HP WAND 検討 3 2 1 玉,青玉,白玉が出る確率は, それぞれ 6'6'6 3回玉を取り出すとき, 赤玉、青玉、白玉が1個ずつ出る (*) 排反事象は全部で 出方は 3P3通りあり、各場合は互いに排反である。 ARSDOK 3P 3個あり, 各事象の確 率はすべて同じ 1 よって, 求める確率は 6X² = 「排反」と 「独立」 の区別 に注意。 事象A, B は 排反 ⇔A, B は同時に起こ らない(A∩B=Ø)。 試行 S, T は 独立 STは互いの結果に 影響を及ぼさない。 「排反」は事象(イベント の結果) に対しての概念 であり,「独立」は試行 (イベント自体)に対し ての概念である。 NHULT 321 666 2

回答募集中 回答数: 0
数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
数学 高校生

どう考えて解くのか分からないので教えて欲しいです あと、蛍光ペンで書いてる内容も理解出来てないので教えて欲しいです

00000 重要 例題 52 2次方程式の整数解 [類名城大 ] に関する2次方程式x(m-7)x+m=0 の解がともに正の整数である とき,の値とそのときの解を求めよ。 数学A基本 106, p.70 基本事項 CHART SOLUTION 方程式の整数解 (整数)x (整数)=(整数)の形にもち込む ····· 2つの正の整数解をα, β とすると, 解と係数の関係から a+B=m-7, aß=m この2式からm を消去し, (αの1次式) (βの1次式) = (整数)の形にする。 解答 2次方程式x^2-(-7)x+m=0 の2つの解をα,β ( α≦β) とすると, 解と係数の関係により a+B=m-7, aß=m m を消去すると a+B=aß-7 よって aβ-α-β=7 ゆえに (α−1)(B-1)-1=7 よって (n-1) (B-1)=8...... ① α, β は正の整数であり, α≦B であるから 0≤a-1≤B-1 よって, ① から (a−1, ß-1)=(1, 8), (2, 4) すなわち (a, B)=(2, 9), (3, 5) m=aβ であるから (α,β)=(2,9) すなわち m=18 のとき x=2,9 (α,β)=(3,5) すなわち m=15 のとき x=3,5 inf 方程式を変形すると m(x-1)=x2+7x xが正の整数ならば右辺が 正。 ゆえに x=1である。 解答にあるとおり, aβ=mであるからも 正の整数である。 よって, m= から 8 x-1 したがって _x2+7x x-1 =x+8+ このとき 8 x-1 も正の整数。 x-1=1, 2, 4,8から x=2, 3, 5, 9 の値は順に m=18,15,15,18 となるから m=15,18 INFORMATION 不等式で範囲を絞り込む方法 係数が整数なら「整数解ならば実数解であるから 判別式 D≧0 (必要条件)」 によっ て,係数の整数値を求め,その中から整数解をもつものを絞り込んでいく方法がある。 (p.69 EXERCISES 35 (2) 参照) この例題では, 解と係数の関係からは整数であることがわかるが、判別式 D={-(m-7)}2-4m=m²-18m+49≧0からでは絞り込めない。

回答募集中 回答数: 0
数学 高校生

連立させてよいかどうかは文字が2つ、式が2つあることが理由ではありません。連立させればよいという理由が先にあって連立方程式になります。 この問題で連立するのは、同じ値で両方が成り立つときを考えるから連立出来るのです。 ⤴︎ このように教えていただいたのですが、同じ値で両方が... 続きを読む

No. Jele Date P1125 同じ解決 ⑩x2+2x+20=0②X2+(k+2)x+k2=0 がただ1つの共通解を持つとき、定(O)と共通解を求めよ 共通解は解だから. ①と②の誰に 代入できる ①、②が共通解βを持つと仮定したときに ·B² + 2k² +2k=0~1 B² + (k+2)² + 2²2²² = 0 ~ 1²2] 5 B² + 2k²² +2p=0 _-_) (² + (k+²) B + R² = 0 -21 R=2のとき、 (b-2)(B-1)=0 (k-2)/~R(R-2)=0 ① x2+4x+4=0 R=1のとき、11、②にR=βを代入] ⑩ (3k+2)=0 k=0のとき 7"720, 42 k=2.0」共通解を持つための条件 詳少これをお求める!! XA2BY ②x2+4x+4:0 x==2 X=-21 x=-2 ①・②共にただ1つの共通2を満たすtat KTO kioは、①,②共通解を持つ条件 ①x=x.p 2 x=√₁² (₂³) 2つの不明が文字と現 が与えられているので 連立で開く 等式の性差が成り立つ=連立で解く 両辺を掛けても、割っても、足しても、引いても 答えは等しくなる 139 olace) Axc = forc CC (c+o) a+c=h+ca-c=b_c 12) k (32²+2) = 0 k=0.-₂²k²0 443-760*3

回答募集中 回答数: 0
数学 高校生

解説を見ても、よくわかりませんでした…💦💦 どなたか解説をお願いします!!

112 基本例題 63 定義域の一端が動く場合の関数の最大・最小 aは正の定数とする。 0≦x≦a における関数 f(x)=x²-4x+5 について (1) 最大値を求めよ。 (2) 最小値を求めよ。 CHART & SOLUTION 定義域の一端が動く場合の2次関数の最大 最小 軸と定義域の位置関係で場合分け 定義域が 0≦x≦a である から, 文字αの値が増加する と定義域の右端が動いて, x の変域が広がっていく。 x-0 x-a したがって, αの値によって, 最大値と最小値をとるxの 値が変わるので場合分けが必要となる。 (1) y=f(x)のグラフは下に凸の放物線であるから, 軸からの距離が遠いほどyの値は大 きい (p.110 INFORMATION 参照)。 よって, 定義域 0≦x≦α の両端から軸までの距離が等しくなる (軸が定義域の中央に一 致する) ようなα の値が場合分けの境目となる。 [1] 軸が定義域の 中央より右 解答 最大 定義域 の中央 [2] 軸が定義域の 中央に一致 [4] 軸が定義域 の外 最大 軸 区間の 右端が 動く 最小 x-0 端から軸ま での距離が 等しいとき 最大 定義域 の中央 ⓒp. 107 基本事項 2. 基本60 €4 [3] 軸が定義域の 定義域の両 [5] 軸が定義域 の内 エー (2) y=f(x)のグラフは下に凸の放物線であるから, 軸が定義域 0≦x≦αに含まれてい れば頂点で最小となる。 よって, 軸が定義域 0≦x≦αに含まれるか含まれないかで場合 分けをする。 ED 区間の 右端が 動く 最小 x0 中央より左 f(x)=x-4x+5=(x-2)+1 この関数のグラフは下に凸の放物線で, 軸は直線x=2である。 最大 定義域 の中央 x-a |←基本形に変形。 B (1) 定義域 0≦x≦a の中央の値は [1] << 2 すなわち0<a<4 のとき 図 [1] から, x=0 で最大となる。 最大値は f(0)=5 [2] 1/2 =2 すなわちa=4 のとき 図 [2] から,x=0, 4 で最大となる。 最大値は f(0)=f(4)=5 [3] 2</1/17 すなわち 4<a のとき 図 [3] から, x=αで最大となる。 最大値は f(a)=a²-4a+5 [5] 2≦a のとき 図 [5] から, x=2で最小となる。 最小値は f(2)=1 [4], [5] から である。 [1] 0<a<2のとき x=αで最小値 α²-4α+5 a≧2 のとき x=2で最小値 1 最大 x-0 T [2] 最大 x = 0 [3] [1]~[3] から 0<a<4 のとき x=0 で最大値5 x=0| a=4 のとき x=0, 4 で最大値5 a>4 のとき x=α で最大値α²-4α+5 (2) 軸 x=2 が定義域 0≦x≦a に含まれるかどうかを考える。 [4] 0<a<2のとき [4] [軸 図 [4] から, x=αで最小となる。 最小値は f(a)=a²-4a+5 [5] x=x=2 軸 x=a x=0 x=0 ● 最大 x=4 最大 x=a 最小 -x=a x=2 最小 =2x=a [1] 軸が定義域の中央 より右にあるか 2 ら, x=0 の方が軸より 遠い。 よって / (0) f(a) [2]軸が定義域の中央 x=1/23 に一致するから, 軸と x=0, α(-4) との 距離が等しい。 よって f(0)=f(a) 最大値をとるxの値が 2つあるので, その2つ の値を答える。 [3]軸が定義域の中央 x=1/23 より左にあるか X ら, x=a の方が軸より 遠い。 よって / (0) <f(a) 答えを最後にまとめて 書く。 [4]軸が定義域の右外にあ るから, 軸に近い定義域 の右端で最小となる。 | [5]軸が定義域内にあるか ら頂点で最小となる。 答えを最後にまとめて 書く。 P RACTICE 63 aは正の定数とする。 0≦x≦a における関数 f(x)=-x+6x について (1) 最大値を求めよ。 (2) 最小値を求めよ。 113 3章 2次関数の最大・最小と決定

回答募集中 回答数: 0
数学 高校生

7行目の四角の部分はどこから来たんですか?

418 第8章 整数の性質 例題 239 考え方 解 *** 合同式の利用(3) 問合 su (1) すべての自然数nについて, 9" +4+1は5の倍数であることを証 明せよ. (2) すべての自然数nについて, 2n+1+32n-1 は 7の倍数であること を証明せよ. (mbom) FORT (1)9≡4(mod5) であるから, 合同式の性質 α"=6" (modm)より, 94" (mod5) がいえる. (2) 2=9(mod7) に着目し,合同式の性質を利用できるように式を変形する。 Move! 01 00 08 01 O(S) (1) 9"+4n+1=9"+4•4" 94 (mod5) であり, nは自然数であるから, 9"=4" (mod 5) 1 331 11 がいる. ① より 9 +4•4"=4"+4・4" anでくくっていbot) pposu 000S+2. ($1 bom) ==²8 33 ここで,4"+4•4"=(1+4)・4"=5・4"より,=8-88=8 (SI Bour) & 8 9"+4+4" 5.4" =0 (mod 5) 88=8+8==='8 g-g="8 (Sibara よって,すべての自然数nについて 9" +4" +1 は5の 倍数である. (2) 2+1+32n-1P とおく. (SIbom) 88 (SI born) pg 1003433+1 2n+1=22.2n-1=4.27-100m) また,32n-1=3・32n-2Fbom =3・32(n-1)=3・97-1 より, P=4・21+3・9-1 ...... ① 01 0001S0001 (med) (32)^-1 ⓘ32"-2 =9n-1 ここで,92 (mod7) より 9-12-1 (mod7) boma=b(modm) α"=6" (modm) (Orbom したがって, ①より, P=4.2" +3.2"-1 (mod7) さらに, 4・2"-' +3・2"-1=(4+3) ・2"-1) ED 7.2より P=0 (mod 7) (01bom) ep ,010,303 以上から,すべての自然数nについて 2+1+321 は7の倍数である. a-e=bid (nlodm)

回答募集中 回答数: 0