学年

教科

質問の種類

数学 高校生

この問題はなぜD1が完全平方式となればいいと言えるんですか?

重要 例題 51 2次式の因数分解 (2) (0①①①①① 4x2+7xy-2y²-5x+8y+kx,yの1次式の積に因数分解できるように, 定数kの値を定めよ。 また, そのときの因数分解の結果を求めよ。 [類 創価大〕 |基本 20,46 CHART OLUTION 2次式の因数分解 =0 とおいた2次方程式の解を利用 (与式)=0 とおいた方程式をxの2次方程式とみたとき (yを定数とみる), 判別 —(7y—5)—√D₁ 式をD, とすると、与式は4{x-(7y-5)+√D}{x-(y-5)-D} の形 8 8 に因数分解される。D1はyの2次式であり,このときの因数がx,yの1次式と なるための条件は √DIがyの1次式⇔ D1 が完全平方式 すなわち D=0 として,この2次方程式の判別式D2 が 0 となればよい。 解答 (与式)=0 とおいた方程式をxの2次方程式とみて、 4x²+(7y-5)x-(2y²-8y-k)=0 ① の判別式をDとすると まれている。これまでと同 っと D=(7y-5)2+4・4(2y²-8y-k)=81y²-198y+25-16k 与式がxとyの1次式の積に分解されるための条件は、 ①の解 がyの1次式となること,すなわち D1 がyの完全平方式とな ることである。 の D=0 とおいたの2次方程式 81y²-198y+25-16k=0 0 判別式をD2 とすると (2+8)(€ 9) = (86) D₂=(-99)²-81(25-16k)=81{11²—(25—16k)}=81(96+16k) 4 D2=0 となればよいから 96+16k = 0 よって x= ゆえに ...... このとき, D1=81y²-198y+121=(9y-11)2 であるから, ① の解は すなわち x=- , -2y+2 y-3 4 $=44-830-81 m2;&ck: __(7y-5)±√(9y-11) __(7y-5)±(9y-11) 8 8 MURDER inf. 恒等式の考えにより 解く方法もある。(解答編 および p.55 EXERCISES 15 参照 ) (5x)=4(x−y=³){x−(−2y+2)} kid =(4x-y+3)(x+2y-2) ◆ D1 が完全平方式 ⇔ 2次方程式 D1=0 が重 解をもつ =) AGOR adot 計算を工夫すると 992(9.11) 2=81112 は、 ←√(9y-11)^=|9y-11| であるが, ±がついて いるから, 9y-11の絶 対値ははずしてよい。 (括弧の前の4を忘れな - PRACTICE・・・・ 51④ を定数とする2次式 x2+3xy+2y2-3x-5y+k がx,yの1次式の積に因数分解 できるときの値を求めよ。 また, そのときの因数分解の結果を求めよ。 [東京大 2章 7 解と係数の関係

未解決 回答数: 1
数学 高校生

(3)の丸したところが分かりません!なぜ1/2にするのですか?解説お願いします🙇🏻‍♀️

第4問 (選択問題) (配点20) 太郎さんのクラスと花子さんのクラスでは、修学旅行で新幹線を利用すること になった。二つのクラスの人数は合わせて80人である。 また,新幹線の座席は, 2列シートまたは3列シートになっている 使用するシートの中に空席ができないように座席の割り振りを考えよう。 (1) 2列シートをxシートだけ使い, 3列シートをシートだけ使うとする。 このとき、x,yは方程式 2x+3y=80 を満たす。 ① において, x=1 とすると, y = アイであり 2・1+3・ アイ=80 が成り立つ。 ①,②から, 方程式 ① の整数解を求めると, kを整数として ウk+1,y= エオ+ カキ と表される。 方程式 ① を満たす0以上の整数x,yの組は全部でクケ組ある。 座席を割り振るとき, できるだけ2列シートだけや3列シートだけに偏るこ とがないようにしたい。 すなわち, |x-yl が最小になるようにするとき 2列シートをコサ シート, 3列シートをシスシート 使用すればよい。 .2 (第7回 19 ) (数学Ⅰ・数学A 第4問は次ページに続く。) (2) (1)より、二つのクラスの80人の座席を使用するシートの中に空席ができ ないように割り振ることができた。 次に、人数Nが2以上の場合、どんな人数であっても、使用するシートの 中に空席ができないように座席を割り振ることができることを確かめよう。 例えば, N = 2,3,4,5について などと表すことができる。 一般に, 2以上のある自然数Aについて, 0 以上の整数x,yを用いて 2x+3y= A と表されたとする。 このとき, x,yのうち少なくとも一つは正の数であり, y≧1のとき 20 セ +3( x≧1のとき 2 =2のときは, x=1, y=0 として N = 2.1+3.0 N=3のときは, x=0, y=1として N=2.0+3・1 N=4のときは, x=2, y=0 として N=2・2+3.0 人間 N=5のときは, x=1, y=1として N=2・1+3・1 t (0) ソ x-2 y-2 タ チ +3 チ (1) x-1 =A+1 と, A +1 を表すことができる。 これを繰り返せば、2以上のどのような自然数も2x+3y (x,yは0以上の 整数) の式で表すことができる。 y-1 =A+1 セ の解答群 (同じものを繰り返し選んでもよい。 ) (2) y タ ≧0, ≧0, (第7回20) x+1 の解答群 (同じものを繰り返し選んでもよい。) ③ y+1 チ N N (4) x+2 y+2 (数学Ⅰ・数学A 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(3)の丸したところが分かりません!なぜ半分にするのですか?解説お願いします🙇🏻‍♀️

第4問 (選択問題) (配点20) 太郎さんのクラスと花子さんのクラスでは、修学旅行で新幹線を利用すること になった。二つのクラスの人数は合わせて80人である。 また,新幹線の座席は, 2列シートまたは3列シートになっている 使用するシートの中に空席ができないように座席の割り振りを考えよう。 (1) 2列シートをxシートだけ使い, 3列シートをシートだけ使うとする。 このとき,x,yは方程式 2x+3y=80 を満たす。 ①において, x=1 とすると, y = アイであり 2・1+3・ アイ=80 が成り立つ。 ①,②から, 方程式 ① の整数解を求めると, kを整数として x= ウk+1, y = エオ+ カキ と表される。 方程式 ① を満たす0以上の整数x,yの組は全部でクケ組ある。 座席を割り振るとき,できるだけ2列シートだけや3列シートだけに偏るこ とがないようにしたい。 すなわち, |x-yl が最小になるようにするとき 2列シートをコサ シート, 3列シートをシスシート 使用すればよい。 ..② ( 第7回 19 ) (数学Ⅰ・数学A 第4問は次ページに続く。) (2) (1)より、二つのクラスの80人の座席を使用するシートの中に空席ができ ないように割り振ることができた。 次に,人数Nが2以上の場合、 どんな人数であっても、 使用するシートの 中に空席ができないように座席を割り振ることができることを確かめよう。 例えば, N = 2,3,4,5について などと表すことができる。 =2のときは, x=1, y=0 として N = 2.1+3.0 N=3のときは, x=0, y=1として N = 2.0+3・1 N=4のときは, x=2, y=0として N=2・2+3.0 人 N=5のときは, x=1, y=1として N=2・1+3・1 一般に, 2以上のある自然数Aについて 0 以上の整数x,yを用いて 2x+3y=A と表されたとする。 このとき, x,yのうち少なくとも一つは正の数であり, y≧1のとき 20 セ +3( + ≧0, t (0) x-2 ソ チ x≧1のとき 20 と, A +1 を表すことができる。 これを繰り返せば, 2以上のどのような自然数も2x+3y (x,yは0以上の 整数)の式で表すことができる。 タ y-2 (1) x-1 +3 チ タ の解答群 (同じものを繰り返し選んでもよい。 ) =A+1 y-1 =A+1 (2) x タ ≧0, x+1 の解答群(同じものを繰り返し選んでもよい。) (2) y (3) y+1 (第7回20) チ 2 2 (4) x+2 y+2 (数学Ⅰ・数学A 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

この問題ってなんで判別式が0以上なんですか

4組 17番 休:46 技: 40 家:- 80 S 本 例題 49 2次方程式の解の存在範囲 (2) xについての2次方程式x (a-1)x+a+6=0 が次のような解をもつ な実数αの値の範囲をそれぞれ求めよ。 (1) 2つの解がともに2以上である。 (2) 1つの解は2より大きく, 他の解は2より小さい。 ブルンジ プションプラ ~45 技46 家 : 40 CHART & SOLUTION 実数解 α, β と実数kの大小 α-k, β-k の符号から考える (1) 2以上と2を含むから、等号が入ることに注意する。 az2, B≥2 ⇒ (a-2)+(B-2)≥0, (a−2)(B-2) ≥0) (2) α<2<β またはB<2<a (a−2)(B-2)<0 解答 x-(a-1)x+a+6=0 の2つの解をα,βとし,判別式を Dとすると D={-(a-1)}-4(a+6)=a²-6a-23 解と係数の関係により a+B=a-1, aß=a+6 (1) α≧2,β≧2 であるための条件は,次の ①,②,③ が同 時に成り立つことである。 D≧0 (a-2)+(B-2) ≥0 (a-2)(8-2)≥0 PRACTICE ①から a²-6a-23≥0 ゆえに ②から at β-40 よって a≧5.. 5 ③から aβ-2(a+β)+4≧0 ゆえに a+6−2(a-1)+4≧ 0 よって a≦12 ... ⑥ ④,⑤,⑥ の共通範囲を求めて 3+4√2 ≤a≤12 a≦3-4√2,3+4√2≦a ゆえに (2) α <2<β または β<2<αであるための条 件は (a-2)(8-2)<0 よって α+6−2(a-1)+4<0 103 ② p.76 基本事項 51 4 (a-1)-4≥0 3-4√2 これを解いて a>12 重要 例題 50 4x²+7xy-2y²-5 定数kの値を定め f(2) CHART & TH 2次式の因数分解 「x,yの1次式の積 されるということ (与式)=0 とおい inf. 2次関数 |f(x)=x²-(a-1) のグラフを利用する (1) D≧0, 2 (軸の位置) ¥2, ƒ(2) ≥0 と、与式は x 数がx,yの1次 きである。 それは AT [解 O (与式)=0 とお 4x2+(7y- の判別式をD1 D = (7y- 与式がxとy 解がyの1次 となることで 81y²-198y+ D2 5 3+4/2 このとき,D> 立っている。 (p.754 ME ==(- =81 (2) ƒ(2) <0 D2=0 とな (p.765 補足 参このとき, ①の解は x= すなわち ゆえに P RACT

未解決 回答数: 1