学年

教科

質問の種類

数学 高校生

126.1 このような記述でも問題ないですよね??

6 基本例題 126 連立漸化式 (2) 数列{an},{bn}をa=1, bı=-1, an+1=5a46n, bn+1=an+bnで定めるとき (1) an+1+xbn+1=y(an+xbn) を満たすx, yの値を求めよ。 (2)数列{an},{bn}の一般項を求めよ。 基本118,125 an+xbn=(a+xbı)y"-1 指針▷p.575 基本例題 125 (1) と同様に, 〔解法1] 「等比数列を利用」の方針によって解けばよい。 (2) (1) から,数列{an+xb} は公比yの等比数列となり 46 これに αn=bn+1-b を代入し α を消去すると bn+1=(1-x)b+(a+xbi)yn-1 02 ① an+1=pan+q"型の漸化式 (p.564 基本例題118) に帰着。 ・・・・・・・・・ よって,① の両辺を y +1で割ればよい。 (pdx+b) 解答 (1) an+1+xbn+1=5an-4bn+x(an+bn) =(5+x)an+(-4+x)bn よって, an+1+xbn+1=y(an+xbn) とすると ...... (5+x) an+ (−4+x)bn=yan+xybn²+√x + b₂+1=an + b₂ S 5+x=yを -4+x=xy に代入して整理すると x2+4x+4=0 ゆえに これがすべてのnについて成り立つための条件は 5+x=y, -4+x=xy したがって 求める x, yの値は (2) (1) から *(a+b) + s ② から a=bn+1-6n, an+1=bn+2-bn+1 これらを①に代入して x=+=DV=6(2+4 [参考] 〔解法2] [1つの数列 に関する漸化式に帰着させ [る] の方針による解答 an+1=5an-4bn ① x=-2 x=-2,y=3 an+1-2bn+1=3(an-2bn) よって,数列{an-26n}は,初項 α1-261=3,公比3の等比 るから bn+2-66n+1+9bn=0 特性方程式x 2-6x+9=0を 解くとx=3 (重解) よって、p.573 基本例題 124 と同じ方針で,まず一般項6m

未解決 回答数: 1
数学 高校生

1枚目のan≠0となる証明は理解できたのですが、 2枚目のa1=1>0、an+1=2√an>0より全ての自然数はnに対してan>0であるのはよくわかりません。また、「ーに対してan>0」ってどう言う意味なのでしょう??

基本例題 119 an+1= ST によって定められる数列{an}の一般項を求めよ。 [類 早稲田大〕 基本116 2 an+1= 指針 漸化式 αn+1= an 4an-1 an のように,右辺の分子が α の項だけの場合の解法の手順は panta ① 漸化式の両辺の逆数をとると 答 CHART 漸化式 an+1= an+1= 1=b, とおくと bn+1=p+qbn an an 型の漸化式 bn+1=b+▲の形に帰着。 p.560 基本例題 116と同様にして一般項 bn が求められる。 また,逆数を考えるために, an=0(n≧1) であることを示しておく。 ところが α= panta したがって an ...... ① とする。 SORTIO 4an-1 ① において, an+1=0 とすると α = 0 であるから, an=0 とな るnがあると仮定すると an-1=an-2==q=0 an= 1 a₁=²/²/² ( (0) であるから,これは矛盾。 よって,すべての自然数nについて αn≠0 である。 ① の両辺の逆数をとると 1 an+1 an 両辺の逆数をとる panto 1 bn 9 -=-= an an+1 =4- bn+1=4-bn an bn+1-2=-(bn-2) 1 = b とおくと an これを変形すると また 1-2=5-2=3 b1-2=- a1 ゆえに,数列{bn-2} は初項 3,公比 -1 の等比数列で bn-2=3.(-1) すなわち bn=3・(-1)"'+2 1 3.(-1)"¹+2 19 00000 Egon an=05 an-1=0 これから an-2=0 以後これを繰り返す。 33d= 逆数をとるための十分条件。 1 an+1 THO Jia Il si ◄bn= 4an-1 an 特性方程式 α =4-α から α=2 an bn=0 という式の形から 565 3章 15 漸化式と数列 で , n). き き q 数 c)dx )に

未解決 回答数: 1
数学 高校生

この問題の最後の√5分の1がどうして出てきたのかわからないです解説お願いします

段(nは自然数) ある階段を1歩で1段または2段上がるとき、この階段の上 22 がり方の総数をan とする。 このとき, 数列{an}の一般項を求めよ。 指針 数列{an} についての漸化式を作り,そこから一般項を求める方針で行く。 段に達する 1歩で上がれるのは1段または2段であるから, n≧3のときn 直前の 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前[(n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。このように考えて、まず隣接3項間の漸化式を導く。 ->> 漸化式から一般項を求める要領は, p.476 基本例題 41 と同様であるが、ここでは 特性方程式の解α, βが無理数を含む複雑な式となってしまう。 計算をらくに扱う ためには,文字α, βのままできるだけ進めて, 最後に値に直すとよい。 a=1, az=2である。 解答 n ≧3のとき, n段の階段を上がる方法には,次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき、 場合の数は (n-1) 段目まで の上がり方の総数と等しく 通り [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2通り [1] 最後に1段上がる (n-1) 段 a= ②から ③から ④-⑤ から 1-√√5 2 n段 ここまでαn-1 通り COSPREE よって an=an−1+an-2(n≧3) (*) この漸化式は, an+2=an+1+an (n≧1) ①と同値である。 x=x+1の2つの解をα, β(a <β) とすると, 解と係数の 関係から a+ß=1, aß=-1g. (I-s)=(I—s) ①から an+2-(a+β)an+1+aban=0 よって 9 [2] 最後に2段上がる an+2-dan+1=β(an+1-aan), a22da=2-a an+2-Ban+1=a(an+1-Ban), az-Ba=2-B B=- ...... (n-2) ...... an+1-dan=(2-α)βn-1 an+1-Ban (2-B) an-1 (B-a)an=(2-α)βn-1-(2-β)α7-1 1+√5 2 であるから 0 β-α=√5 また, α+β=1, α2=a+1, β2=β+1 であるから 2-α=2-(1-β)=β+1=β^ 同様にして 2-β=2 よって, ⑥ から \n+1 - // ((¹+2√/5 ) **¹-(¹-√/5 )"+") an= 1-√√√5 +1 ....... (4) ③3 n=2 (n-1) 段 n段 ここまでαn-2通り 和の法則 (数学A) (*) でn→n+2 特性方程式 x2-x-1=0の解は -1+√5 2 a=1, a=2 x= arn-1 an+1 を消去。 α,βを値に直す。 2-α, 2-βについて は,αβ の値を直接 代入してもよいが,こ こでは計算を工夫し ている。

解決済み 回答数: 1
数学 高校生

⑶で右側に小さく書いてある⑵に繰り返し用いるとはどういうことですか? あと最後のlim|an-3|=0でどうしてliman=3になるんですか?

2 例題17 漸化式と極限 (3) ( a=1, an+1=√2a+3 (n=1,2, 3,) ......) で定義される数列{an} について,次の問いに答えよ. (1) 数列{an}が極限値 αをもつとき,α の値を求めよ. (2)(1)のαについて, la,-allan-α を示せ .na (3) lima=α であることを示せ . [考え方] TAN 解答 11-0 P (1) lima=α のとき, liman+1=α であるから, 1140 1148 これを与えられた漸化式に代入して考える. 求めた αが条件に合うか確認が必要 (2) (1)で求めたα を代入し,漸化式を用いて不等式の 左辺を変形する. LAM (3) 実際に lima" を求める. はさみうちの原理を利用する。 21-0 赤客室 ぜったい④ (1) lima=α とすると 漸化式 an+1=√2a+3より 両辺を2乗して, 03/ **$²9 +1 はさみうち使う時 左辺が正って = An 16 S α=-1 は ①を満たさないから, (2), lax+1-31 = √/2a₂+3 -31-01-20 +3-=-3 M/(2a+3)-91 1 √2an+3 +3 ②. lim2(12/3) 12・ n1 → ∞ liman=liman+1=α なので、 1200 12 534 a = √2a+3 ① 11 → 00 α²=2a+3 より, lim|a-3|=0 √2an a=3 -12an -61 ...... a=-1, 2 √2an+3+3 -lan-31≤an-31 3 ここなくす いいたいために 絶対値記よって、lamm-31 / 3 14.31 は成り立つ。 F.DE (3) (2)より10-31≦0/2/31lan-1-31 × ここで、a=1 より 0a-312 (23) 2 An-1 2\n-1 n-1 (²) Ian-2-31 ≤...(3) |a₁-31 ai Coll= = 0 とはさみうちの原理より, **** YA y=x/ J O a2a3 i=1 もどき 120m+3+3 120+3分子の有理化 11 →∞ よって, lima =3 となり、題意は成り立つ 22100 $=0 お二期間 y=√2x+3 無理方程式 (p.98参照) x a²-2a-3=0 (a+1)(α-3)=0 α=-1, 3 が ① を満 たすか確認する. 第1章 特性方程式 みたいにauthous をdとかおいて、 √2a+3≧0より, √2an+3+3≥3 √2an+3+3 101. 1 3 1200) (2)をくり返し用いる. |a-3|=|1-3| =|-2|=2

回答募集中 回答数: 0
数学 高校生

(2)の解説がよく分かりません。変形から先を教えて頂きたいです!

〇和が -) 数列の 例題 310 漸化式と確率 (3) 数直線上を原点から右 (正の向き) に硬貨を投げて進む。 表が出れば 1 進み, 裏が出れば2進むものとする。 このようにして, ちょうど点nに到 達する確率をpm で表す. ただし, nは自然数とする. ( (1) 3以上のnについて, n と D-1, D-2 との関係式を求めよ. (2)≧3) を求めよ. 48305 ++ ■解答 (1) 点nに到達するのは, 点 (n-1) に到達して表 が出る場合か、点 (n-2) に到達して裏が出る場 immi mm 合である。よって, n≧3のとき, 考え方 (1) 点nに到達するのは、次の2つの場合が考えられる. (ii) (i) (n-1)に到達して、 表が出る. imm (ii) (-2)に到達して, 裏が出る. (大豆北) 1 (2) pn=12pn-1+1pn-2 を変形して, Focus P₁= G-LAL 初項 1 pn=Pn-1 • 2 + pn-2 • 1² = 12 Pn-1 + ½ pr-: 2 1 A-1293847 12/23 2' Pnt. +/1/2.pn-2 3 p2= だから,数列{bn+1-pn}は, 4 か=21,公比 = 1,公比 - 123の等比数列となり, n-1 n+1 Pn+₁-pn = 1 + (-1) ² - ¹ = (-1)^² ..1 ...... 4 2 数列 pats+ /1/2pm} は隣り合う項が等しいから Pn+₁ + 1/² Pn= P₂ + ²/² P₁ = ³ + 1/2 - 12/1 3 4 よって①,② より p=//{1-(-1/2)^2} n-2 NDOSE 3&<$7/₂2²_1 A2 pn=²3 3 43435 n-1 x2= -x+ Pn-Pn-1=--(Pn-1-Pn-2) Pn-Pn-1=(Pn-1-pn-2) 2 2 2解x=- **** (n-1)+1 n (京都大) 特性方程式 (n−2)+2n ([). 裏 → 23 (i) 点nに到達する1回前の試行に注目して漸化式を作る 3項間 100 2' n 1/12/12/01/11/1/11/11/ βとして Pn-apn-1 B(pn-1-apn-2) に2通りの代入をする. 2 は次のように考える. 1 1_1 P₂= P₁° 2 + 2 = 2 Pit. 3 1 \n +1] || =* = P₂+2 P₁ 2-1 をα, Pn+1 + 1/ Pn=p₂ + 1/2 Pn - 1 + XC 1 2 なとき 第8章

回答募集中 回答数: 0
数学 高校生

数列{Pn-1-Pn-2}の一般項を求めるのと 数列{Pn+1-Pn}の一般項を求めるのは同じことですか? (2)のPnを出す際に行き詰まりました。 お助け願います🙏

Che 例題 310 漸化式と確率 (3) BASE **** 数直線上を原点から右(正の向き) に硬貨を投げて進む.表が出れば1 進み,裏が出れば2進むものとする.このようにして,ちょうど点nに到 達する確率をpn で表す.ただし, nは自然数とする. (1) 3以上のnについて, n と D-1 D-2 との関係式を求めよ. (2) (n≧3)を求めよ. 「考え方(1)点nに到達するのは,次の2つの場合が考えられる. ¯¯¯(ii)- (i) (n-1)に到達して、 表が出る. immmmii mmmmm (ii) (-2)に到達して、裏が出る. 解答 Focus - (1) 点nに到達するのは,点(n-1) に到達して表 ++ が出る場合か,点(n-2) に到達して裏が出る場 mmmm in 合である。よって, n≧3のとき, 1_1 m-1--1/7/2 2 2 1 (2) pn=1/21pn-1+1pn-2 を変形して, Þn— --2 Pn+ 1² Pn-1=Pn-1 + 1/ Pn-2 1 2' p= Pn=Pn-1°¯ P₂=- 3 + Pn-2- -pn-1+1/2 pn-2 4 初項 pz-p= = 1,公比 RS だから,数列{bn+1-pn} は, 1/23の等比数列となり, n+1 132 n-1 Pn+1-pn=1 -(-2) ² - ¹ = (-2) ・① 数列{bn+1+1/12/0} は隣り合う項が等しいから n-2 3 Pn+1 + 1/ Pn=D₂ + 1/2 P₁ = ³ + ²2-12- p 4 よって、①,②より, p=//{1-(-1/2)^2} AABOUT βとして n-1 (n-1)+1→n m 特性方程式 (n-2)+2→n(1) 裏 3項間の漸化式 (京都大) →n x² = 1/2x + 7/12/2 -x -(i)- の2解x=- 1 を α, 2' 3 p2=pi + pn-apn-1=B(pn-1-apn-2) に2通りの代入をする. 2 は次のように考える. 1 1 1 点nに到達する1回前の試行に注目して漸化式を作る HOMENS n 1 2 22 2 \ n +1] = 1; = P₂+ = 1 1 Pn+1+₂ Pn=Pn+ 2 Pn-1 +1/201 P₁+ x DE AARDE

回答募集中 回答数: 0