学年

教科

質問の種類

数学 高校生

196. 記述はこれでも大丈夫ですか??

は、 a y=f y=fal 基本例題 196 接線の方程式(基本) ○○○○○ (1) 曲線 y=x 上の点 (2,8) における接線の方程式を求めよ。 (2) 曲線 y=-x+xに接し, 傾きが-2である直線の方程式を求めよ。 (S-S) p.308 基本事項 ① 重要 200 指針曲線 y=f(x) 上の点(a, f(a)) における接線 傾き f'(a), 解答 (1) f(x)=x3 とすると f'(x)=3x2 方程式 y-f(a)=f'(a)(x-a) まず, y=f(x) として, 導関数f(x) を求めることから始める。 (1) (28) 曲線上の点であるから、公式が直ちに利用できる。 (2) 傾きは与えられているが, 接点の座標が与えられていないから, まず,これを求める必要がある。 TAUBILD SA それには,x=a の点における接線の傾きが-2と考え,f'(a) = -2 を解く。 点 (28) における接線の傾きは f'(2)=12 よって,求める接線の方程式は y-8=12(x-2) すなわちy=12x-16 (2) f(x)=-x3+x とすると f'(x)=-3x2+1 点(a, -α+α) における接線の方 程式は y−(−a³+a)=(−3a²+1)(x-a) この直線の傾きが-2 であるとす ると -3a²+1=-2 ゆえに a²=1 よって a=±1 ①から YA 8 したがって 0 2 0 x YA x y=f(x), 0 接線 A(a, f(a)) 17² TSIANO 参考 (1) 点(0, 0) におけ る接線の方程式は, y0=0(x-0) から y=0 すなわち, x軸である。 点 (x1, y1)を通り,傾きが mの直線の方程式は y-y=m(x-x) y=-2(x-1)=0&y=x+ DER のとき a=1 理してからαの値を代入 a=-1のとき y=-2(x+1) y=-2x+2, y=-2x-2 | するより、①にそのまま の値を代入する方が早い。 x 接点の座標が具体的に与え られていない。 このような 場合は、接点のx座標をα とおいた接線の方程式と問 題の条件からαの値を求 める。 練習 (1) 曲線 y=x-x2-2x 上の点 (3,12) における接線の方程式を求めよ。 1967) 曲線 y=x+3x2 に接し, 傾きが9である直線の方程式を求めよ。 Op.314 EX127 309 6章 35 接 線

回答募集中 回答数: 0
数学 高校生

なぜ、b≦0とb>0で場合分けをするのですか? b<0とb>0ではだめなのですか? またb≦0だった場合、b>0のような場合分けの仕方はしないんですか?

107 2次関数の区間における最大・最小 74 [精調]] con 100 226 127 (D) を(0) 242/2alb(2P1) とおく。 区間15分 で場合分けをすることになります。 一方,650のときにはグラフは上における 放物線か直線になるので,次の事実を利用できます。 (一般にup(z)のグラフが区間:amzbにおいて、上に凸(ある。 は線分) であるとき, が成り立つ。 解答 uf(t) のグラフを考えましょう。 もりのときにはグラフは に凸な放物線ですから,軸と区間 -15E1の位置関係によっ TEBVC g(x)=0 "g(a)20 g(b)20" が成り立つ。また、1において下に凸(あるいは線分) であるとき, において g(x))"g(a)=0 かつg(b)≧0" f(t)=2+2√/2at+b(212-1) =2612+2√2at+2-b である。 ( b>0のとき において, "-1≦t≦1のすべてのに対して f(t)≧0である”.....( * ) ためのa,b の条件を tu 平面における u= f(t) ...... ① のグラフを利用して求める。 (i) b0 のとき b<0 のとき, ① は上に凸な放物線であり, b=0 のときは直線であるから, * 20 f(-1)≧0かつf(1) baya-2かつb≧2√2a-2 #est both とかでは ないのし F(t)=20(1+2)²-²+2-6 WA SH 1 bitt u=f(t) 95²

回答募集中 回答数: 0
数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

74.2 これでも大丈夫ですよね??

分する。 よ。 を する。 (X₂, 3) の座標は の平均 ばよい。 < 1 7 平行四辺形の頂点の座標 基本例題 74 (1) A(7, 3), B(-1, 5),C(5, 1), D を頂点とする平行四辺形ABCD の頂点D の座標を求めよ。 (2)3点A(1,2), B (5, 4), C (3, 6) を頂点とする平行四辺形の残りの頂点D の座標を求めよ。 指針 平行四辺形の対角線は、互いに他を2等分するから, 2本の対角線の中点が一致する。 このことを利用して,点Dの座標を求める。・・・・・・・・・・ (普通、平行四辺形ABCD というように,頂点の順序が与えられているときは,Dの位 置は1通りに決まる。 (2) (1)異なり、頂点の順序が示されていないから, 平行四辺形ABCD と決めつけては いけない。 ABCD, ABDC, ADBCの3つの場合を考える。 解答 頂点Dの座標を(x,y) とする。 (1) 対角線AC, BD の中点をそれぞれ M, N とすると M(715, 3+¹), N(−1+x 5+y) 2 点Mは点N と一致するから -1+x 4 12 2 22 5+y 2 よって x=13, y=-1 ゆえに D(13, -1) (2) 平行四辺形の頂点の順序は,次の3つの場合がある。 [1] ABCD [2] ABDC [3] ADBC [1] の場合,対角線は AC, BD であり,それぞれの中点を M, N とすると M(1+3, 2+6), N(5+x 4+v) 2 以上から、点Dの座標は 4 2 _5+x 2 8 4+y 2 2 M, Nの座標が一致するから これを解いて x=-1, y=4 [2] の場合,対角線は AD, BCであり,同様にして 1+x=22₁ ²2 8 2+y_10 2 よって x=7, y=8 [3] の場合,対角線は AB, CD であり,同様にして 6 3+x 6 6+y 2 22 2 よって x = 3, y=0 (-1, 4), (7, 8), (3, 0) B. p.113 基本事項 ④4 0 M(N) C C A AL DM B D x D' (検討) 上の図で, 線分 AD', BD, CD" の交点は △DD'D" の重 心であり, △ABC の重心で もある。 練習 3点A(3, 2), B(4, 1), C (1, 5) を頂点とする平行四辺形の残りの頂点Dの座 ② 74 標を求めよ。 119 3章 12 直線上の点 平面上の点

回答募集中 回答数: 0
数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0