学年

教科

質問の種類

数学 高校生

283番の解説をお願いします

arors alons-y e premiers'appe- Tait Schulz, ensemble. As-tu un enfant? va 2ONCE CENDRILしON Je: Se cople puis long- Iétait une fois un hómme riche dont la femme Le cercueide verre av tci fo un avoir n 61 ISer |de 282. AABC において, 次の問いに答えよ。 (1) aを A, B, cで表せ。 c'sin AsinB 2sin(A+B) となることを示せ。 (2) △ABC の面積をSとするとき, S= No. *283. AB=2, BC=3, CD=1, ZB=60° の四角形 ABCD が円Oに内接していると Date き,次のものを求めよ。 (1) 対角線 AC の長さ (3) 辺DA の長さ (2). 円Oの面積 (4) 四角形 ABCD の面積 26 例題48 半径1の円に内接する正十二角形について, 次のものを求めよ。 周の長さ 発展(1) (2) 面積S 考え方 正十二角形を12個の合同な二等辺三角形に分けて考える。 (1) 円の中心を 0, 正十二角形の隣接する頂点を A, Bとすると, ZAOB=360°-12=30° △OAB において,余弦定理より, AB=12+1°-2·1·1.cos 30° 解 B Q.6 30° 0 268 /3 =1+1-2·1·1·Y =2-V3 2 AB>0 より, O 4-23 V2 V6-(2 4-2/3 AB=/2-/3 2 してこ (3+1)-2/3×1 ミこで 3-1 2 V2 2 よって、周の長さは、16-2x12=6/6 -6/2 -×12=6/6-62 2 したP (2) S=△OAB×12=- …1·1·sin30°×12=3 2721 284.半径rの円に内接する正n角形と外接する正n角形がある。次のものをr, n を用いて表せ。ただし,n23 とする。 (1) 円に内接する正n角形の面積 S」 (2) 円に外接する正n角形の面積 S2 08S C BU C →例題48 2 第3章

回答募集中 回答数: 0
数学 高校生

kってどこからでてきたんですか?

QGUIDE) 2直線 ax+ by+c=0, dx+ey+f=0 の交点を A(ax+ by+c)+(dx+ey+f)=0 (kは定数) 図 2で求めたんの値を国の方程式に代入し, x, yについて整理す 例えば,上の解答の③は,kの値を変化させると,直線①, ② の交点を通ぶ は,2直線の交点を通る直線を表す(直線 ax+by+c=0 は表すことができない 2直線の交 のの交点 の, x+2y-1=0 基礎例題80 2直線 2x-3y+4=0 トム 2 UP B(2, 3) を通る直線の方程式を求めよ。 題にお GHART QGUIDE) I 0, のの交点を通る直線の方程式を とおく。 が2 次の2 限点1 を変 ここで ことが k(2x-3y+4)+(x+2y-1)=0 日解答田 2直 をを定数として,方程式 (2x-3y+4)+(x+2y-1)=01 V B(2,3) から 交点Aのよ の 式0.0 の 3 り の表す図形は,2直線 ①, ② の交 点Aを通る直線である。 直線3が点B(2, 3) を通るとき k(2-2-3-3+4)+(2+2-3-1)=0 3-1 よって、 x|の方程式は 01 ソ-3=- 2- ゆえに ーk+7=0 よって これを③に代入して整理すると k=7 15x-19y+27=0ha すなわち Lecture 2直線の交点を通る直線 交わる2直線 ax+by+c=0, dx+ey+f=0 に対し k(ax+by+c)+(dx+ey+f)=0 (kは定数) は,2直線の交点を通る直線を表す(直線 ax+hu+c=0 は表すことかい。 例えば、上の解答の③は,kの値を変化さキろと 直独①. ②の交点 線を表す。 なお,上の解答の最大の竹 いうと

回答募集中 回答数: 0