学年

教科

質問の種類

数学 高校生

4ページ目の"ク"についてです。 求め方が、解答の波線のような式になる理由を教えていただきたいです🙇‍♂️ 少し長い問題なのですが、よろしくお願いします。

第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題)(配点20) 以下のように,歩行者と自転車が自宅を出発して移動と停止を繰り返して る。 歩行者と自転車の動きについて, 数学的に考えてみよう。分 自宅を原点とする数直線を考え, 歩行者と自転車をその数直線上を動く点とみ なす。数直線上の点の座標がy であるとき、その点は位置y にあるということに する。また,歩行者が自宅を出発してからx 分経過した時点を時刻xと表す。歩 行者は時刻 0に自宅を出発し,正の向きに毎分1の速さで歩き始める。自転車は 時刻に自宅を出発し、毎分2の速さで歩行者を追いかける。 自転車が歩行者に 追いつくと、歩行者と自転車はともに1分だけ停止する。 その後, 歩行者は再び 正の向きに毎分1の速さで歩き出し、 自転車は毎分2の速さで自宅に戻る。 自転 車は自宅に到着すると, 1分だけ停止した後、 再び毎分2の速さで歩行者を追い かける。これを繰り返し, 自転車は自宅と歩行者の間を往復する。 0800 x=a を自転車が回目に自宅を出発する時刻とし, y = b" をそのときの歩 010 188.0 8.0 行者の位置とする。 OEREA 018.0 OPTECTED a100 TRE 0888.0 C ECOD exco (1) 花子さんと太郎さんは,数列{an}, {bn}の一般項を求めるために, 歩行者 と自転車について,時刻xにおいて位置にいることを0を原点とする座標 20 ATAP Rosa 08.1 数学II・数学B 第4問は次ページに続く。) 0 平面上の点(x,y) で表すことにした。 BIOP 501020 TIBA.0 S180 8084.0 508 T28.0 8.00881.0 80. DERAD AERA O SER.O TEGO 200 120.000.0 80.00 8380 3888,0 8408.01.1 00.0 8804.0 selo 100.00000.0 tep OCTOP:0 STRAITEOOTED 0.000 0 PTO BITE.0 e.r OS IS SS ES a.s 8.5 00000 9800.0 RB03.00808825005806.00 1 0000 900000yennine が成り立つことがわかる。まず b bi を得る。この結果と 2 である。 10 a2= a=2,61=2により, 自転車が最初に自宅を出発するときの時刻と自転 車の位置を表す点の座標は (2,0)であり,そのときの時刻と歩行者の位置を 表す点の座標は (22) である。 また, 自転車が最初に歩行者に追いつくとき である。よって の時刻と位置を表す点の座標は H+*D a 1 イ . b2= (1#TAGION 6 花子: 数列{an}, {bn}の ウ ア a2 ア 一般項について考える前に, ア (8) 太郎:花子さんはどうやって求めたの? ア の求め方について整理してみようか。 花子 自転車が歩行者を追いかけるときに, 間隔が1分間に1ずつ縮まっ ていくことを利用したよ。 太郎 : 歩行者と自転車の動きをそれぞれ直線の方程式で表して,交点を計 は算して求めることもできるね。 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(3)において④よりなぜ、(1)には無かった0以上という条件が加わるのでしょうか、教えてください🙏

198 2点で交わるときの値の範囲を求めよ で求めたくとき、その交点を分の中点の座 いてませ。 it 軌跡(8) 分の中 (3) 中点 ① x-y+24=0.②について を求めよ。 が異なる点で交わる Comous DD>0 に考えると・・ 2次方程式(中)から2点の標を実際に求めて考える。 求めるものい 2次方程式(*)の2解.8とする BERBORK D>0 より do 1/③であるから (2) αが(1)で求めた範囲を動くと 円 ①と直線②の2交点の 標はxの2次方程式 ③ の 2つの実数解である。 これらをα, βとすると解と 係数の関係より ⇒中店の 《Action 分の中点の軌跡は, 解と係数の関係を利用せよ ITE) (1) ①②よりを消去して整理すると (1 + a²)x²+4a³x+4a²-1=0 Q.② は異なる2点で変わるから, ③ の判別式をDと するとD =(2a)²-(1 + a²) (4a²-1) = -3a²+1 -3a²+1>0 3 <a< (X,Y)- 計算が雑 √3 -1 34 (2 @ 2-10 β1 x 40² a+B=-1 + a² よって①と直線②の2交点の中点の座標を(X,Y) とすると 4① の中心と②日 距離をd円 ① るが、 で交点の座標を考える ら③を考える。 Play Back 8 参照 3 <0 +√3)(²-3)< (a+ より +73 に注意する。 a<+- | 2次方程式 x²+bx+c=0の2つ の解をa, βとすると a+B=-- aß としないよう C a (X1) ② X-Ya-015 したがって ゆえに、 求める3点の中のは (1+³)x=-2 (X+2)²--x X-2 とすると、左辺) 6, 2 となり不 よって、 X-2 であるから ⑥両辺を2乗すると を代入すると y = ²X +2 Y₁X _X+2(x+29 X²+2X+Y-B y=-X(X+2) より よって (X+12+Y2=1 ... ここで、⑤より X-21 ④ より 1/3であるから - 1<x50-sitect in ⑧ ⑨ より 求める中点の 軌跡は -x+2) => 1 円 (x+1)+y^2=1の <xs0 の部分 Point 弦 (線分) の中点の軌跡を求める手順 ① 2つのグラフの式を連立して、 2次方程式をつくる。 ② 共有点のx座標α B① の方程式の解 I 中点をとる 中点のy座標を X で表す。 X, Y以外の文字を消去 ④α, B が異なる2つの実数解であることから, Xの変域を求める。 解と係数の関係の利用 1114 xy平面上に, 円 C: (x-1)^2+(y+2) = 25 および直線l:y= り、 異なる2点で交わっている。 (1) の値の範囲を求めよ。 (2) C がしから切り取る弦ABの中点Mの座標をんで表せ。 (3) kの値が変化するとき, Mの軌跡を求めよ。

回答募集中 回答数: 0