学年

教科

質問の種類

数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0
数学 高校生

数学の質問です (2)の問題でなぜ(1)のような場合分けのやり方ではダメなのですか? 解答よろしくお願いします🙇

第1章 IP 19 絶対値記号のついた学式 33 (解Ⅲ) 34 を利用すると・・・) Y y=x-3| のグラフは右図のようになるので, PAS y=x-31 3 y<2 となるæの値の範囲は 1 <x<5 2 y=2 次の不等式を解け (1) x-3/<2 .......① (2)|x+1/+/x-1/4 ......② 精講 絶対値記号の扱い方は,不等式の場合も方程式 (18) と同様に、 国 で学んだ考え方が大原則ですが,ポイントⅠの考え方が使えるなら ば、場合分けが必要ない分だけラクです。 また,3で学ぶグラフを利用する考え方(解Ⅲ)も大切です。 (1) (解Ⅰ) 解答 |-3|<2 は絶対値の性質より 2<x-3<2 (解Ⅱ) : 1<x<5 (2) i) <-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)-(x-1)<4 . -x-1-x+1<4 よって, -2<x<-1 i-1≦x≦1 のとき x+1≧0, x-1≦0 だから -2<x ? ②は (x+1)(x-1) <4 .. 0.x+2<4 0.x<2 よって, -1≦x≦1 をみたすすべての i) 1<z のとき x+1>0, x-1>0 だから ②は (x+1)+(x-1) <4 .. x<2 よって, 1<x<2 0 1 3 ◆不等式をみたす xを求めるので は式に残して おく 基礎問題 「基礎間」とは、入試に できない)問題を言いま 本書ではこの「基礎問」 効率よくまとめてありま ■入試に出題される 取り上げ、教科書 行います。 特に、 実にクリアできる ■「基礎間」→「精 題」で1つのテー ■1つのテーマは原 x-3 |r-3|= (x≥3) (3) i) x≧3のとき ①はx-3<2 :.x<5 よって, 3≦x<5 ii) x<3のとき ①は(x-3)<2 .. -x+3<2 ∴ 1<x よって, 1<x<3 i), ii) をあわせて1<<5 れないこと <x<3と仮定し れないこと i) ~i) をあわせて, -2<x<2 絶対値の中身が 0 となるところ で場合分け ポイント x≧3と仮定し ていることを忘 Ⅱ. |A| = A= -A (A<0) 1.xk<a (a>0) のとき, A (A≥0) -a<x<a ていることを忘 演習問題 19 次の不等式を解け. (1) |-2|>2 (2)|x-1|<|2x-3|-2

回答募集中 回答数: 0
数学 高校生

全くわかりませんできれば明日までに回答が欲しいですおねがいします。

A2 20人の生徒に10点満点の数学のテストを行った。試験当日1人の生徒が欠席したため、 19人の生徒が受験し、19人の生徒が受験したテストの得点の平均値は5(点),分散は4で あった。 後日、欠席していた1人の生徒がこのテストを受験したところ、 得点が7点であった。 太郎さんと花子さんは、今回のテストの得点の分散について会話をしている。 2人の会話 を読み、 以下の問いに答えよ。 ただし, テストの得点は整数とする。 太郎: 受験者が1人増えたから,分散の値も変化するよね。 花子:そうだね。 でも、20人の受験者全員の得点がわからないから,どうやって求め たらいいかな。 太郎 次のようにして求めるのはどうだろう。 <太郎さんの解答> 試験当日にテストを受けた19人の受験者の得点をx (1≦x≦19, nは自然数)と おく。 試験当日にテストを受けた19人の受験者の得点の平均値が5, 分散が4であ るから {(x1-5)+(x2-5)+…+(x19-5)^= 4D すなわち (x1-5)+(x2-5)+…+(x19-5) 76...... ② よって、 20人の受験者全員の分散をVx とすると V2= 2l(x1-5)2+(x2-5)+…+(-5)+(7-5)2 =2/10(764) ......④ =4 花子: <太郎さんの解答> には誤りがあるよ。 (ア) がおかしいよ。 太郎: そうか。じゃあ、どうすればいいのかな。 花子: 分散は,(分散)=(x^2の平均値)(xm の平均値)? を利用して求めることができ るから、試験当日にテストを受けた19人の受験者の得点x (1≦x≦19 n は自 然数)について, (xm² の平均値) を求めることにより、 20人の受験者全員の得点 の分散を求めることができないかな。 (1) 試験当日にテストを受けた19人の受験者の得点の標準偏差を求めよ。 また, 花子さん が誤りを指摘した (7) に当てはまるものを,次の1~4のうちから1つ選び、番号で 答えよ。 1 ①立式 2 ①から②への式変形 3 ③ 4 ③から④への式変形 (2)19, nは自然数) の平均値を求めよ。 また, 20人の受験者全員の得点の 分散 Vs を求めよ。 (配点 20 )

回答募集中 回答数: 0