学年

教科

質問の種類

数学 高校生

数IAの演習問題のテストが全く分かりません (2)から苦戦しています なぜy=(x-160)(400-x)-6000になるのか解説よろしくお願いします🙇!!

5 花子さんと太郎さんのクラスでは,文化祭でたこ焼き店を出店することになった。 2人は 1皿あたりの価格をいくらにするかを検討している。 次の表は、過去の文化祭でのたこ焼 き店の売り上げデータから, 1皿あたりの価格と売り上げの関係をまとめたものである。 1皿あたりの価格 (円) 200 250 300 売り上げ数 (皿) 200 150 100 6 b ラ下 以下 b= (1) (1) まず, 2人は,上の表から 1皿あたりの価格が50円上がると売り上げ数が50皿減 ると考えて、売り上げ数が1皿あたりの価格の1次関数で表されると仮定した。このと き, 1皿あたりの価格をx円とおくと, 売り上げ数は アイウ -x と表される。 ① (2)次に、2人は、利益の求め方について考えた。 花子: 利益は,売り上げ金額から必要な経費を引けば求められるよ。 太郎 : 売り上げ金額は、1皿あたりの価格と売り上げの積で求まるね。 花子 : 必要な経費は,たこ焼き用器具の賃貸料と材料費の合計だね。 材料費は、売り上げ数と1皿あたりの材料費の積になるね。 2人は,次の3つの条件のもとで, 1皿あたりの価格を用いて利益を表すことにした。 (条件1) 1皿あたりの価格が円のときの売り上げ数として ①を用いる。 (条件2) 材料は、 ①により得られる売り上げ数に必要な分量だけ仕入れる。 (条件3) 1皿あたりの材料費は160円である。 たこ焼き用器具の賃貸料は6000円で ある。 材料費とたこ焼き用器具の賃貸料以外の経費はない。 利益を円とおく。yをxの式で表すと y=-x+エオカ x キx10000 である。 (3)太郎さんは利益を最大にしたいと考えた。 ②を用いて考えると, 利益が最大になる のは1皿あたりの価格がクケコ 円のときであり,そのときの利益はサシスセ円 である。 (4) 花子さんは,利益を7500円以上となるようにしつつ,できるだけ安い価格で提供し たいと考えた。 ②を用いて考えると, 利益が7500円以上となる1皿あたりの価格のう ち、最も安い価格はソタチ 円となる。 (2)

回答募集中 回答数: 0
数学 高校生

(ィ)の解説でan+2=an+1+anができるのが何故か教えて欲しいです!!

210 第7章 数 列 基礎問 135 場合の数と漸化式 6/5 (1)5段の階段があり, 1回に1段または2段 登るとする. このとき, 登り方は何通りある か. ただし, スタート地点は0段目とよぶこ とにする. (右図参照) (2)(1) と同じようにn段の階段を登る方法が an通りあるとする. このとき, (ア) α1, a2 を求めよ. (イ) n≧1 のとき, an+2 を αn+1, an で表せ. ◎(ウ) αg を求めよ. [N 139 211 (イ) 1回の登り方に着目して (n+2) 段の階段を登る方法を考えると次 の2つの場合がある. star ① 最初に1段登って, 残り (n+1)段登る ② 最初に2段登って, 残りn段登る ① ②は排反で (n+1) 段登る方法, n段登る方法はそれぞれ 舎の事象がすまたま、他方の事象 起きまない状態 an+1 通り, an通りあるので、 an+2=an+1+an an+2=an+1+an (ウ)(イ)より, ([+a)o= mi 平 =246+α5=2(astq4)+as 精講 (1) まず, 1段,2段, 2段と登る方法と2段, 1段, 2段と登る 方法は,異なる登り方であることをわかることが基本です. 次に、 1段を使う方法は5が奇数であることから1回,3回, 5回のどれかです. そこで、1と2をいくつか使って, 和が5になる組合せを考えて,そのあと 入れかえを考えればよいことになります. (2)(イ)これがこの135のメインテーマで, 漸化式の有効な利用例です. 考え 方は,ポイントに書いてあるどちらかになります. この問題では, どちらで も漸化式が作れます. (ウ)漸化式が与えられたとき,一般項を求められることは大切ですが, 漸化 式の使い方の基本は番号を下げることです. as=a+a6 (α6+α5)+a6 参考 m =3a5+2a=3(α+α3) +2a4 =5a4+3a3=5(a3+α2) +3as =8a3+5a2=8(a₂+a1)+5a2 10219 13+84=13×2+8×1=34 (通り) IA 91 ポイント I. (ウ)の要領で α5 を求めると, αs=3a2+2a1=3×2+2=8 (通り)となり,(1)の答と一致します。 Ⅱ. 最後の手段に着目するときは,次の2つの場合となります. ① まず (n+1) 段登って、最後に1段登る ② まずn段登って、最後に2段登る ポイント 場合の数の問題で漸化式を作るとき,次のどちらか ① 最初の手段で場合分け ② 最後の手段で場合分け 第7章 解答 (1)5段の階段を登るとき, 1段登ることは奇数回必要だから, 1段を1回使う組合せは, 1段, 2段, 2段 3回使う組合せは, 1段, 1段, 1段2段 5回使う組合せは、 1段, 1段, 1段1段, 1段で 演習問題 135 横1列に並べられたn枚のカードに赤か青か黄のどれか1つの それぞれ,入れかえが3通り, 4通り、1通りあるので 3+4+1=8 (通り) (12,2)(2112)(2.2.1) (11.1.1) (2) (ア) 1段登る方法は1つしかないので, a=1 2段登る方法は,1段, 1段と, 2段の2通りあるので, a2=2 色をぬる. 赤が連続してはいけないという条件の下で,ぬり方が an 通りあるとする. (1) α1, 42 を求めよ. (2)n≧1 のとき, an+2 を an+1, an で表せ. (3) αg を求めよ.

回答募集中 回答数: 0
数学 高校生

(3)の解説がわからないです! 精講に球面Cと直線lが異なる2点で交わるときOH<半径とありますがそれも分からないので教えて欲しいです!!

263 うる値の範囲を求めよ. (3) 球面Cと直線1が異なる2点P,Qで変わるようなαのとり 基礎問 262 第8章 ベクトル 168 球と直線 座標空間内に, 球面C:x+y+z=1 と直線があり、直線 1は点A(a, 1, 1)を通り, u = (1, 1, 1) に平行とする.また, a1とする。このとき,次の問いに答えよ. (上の任意の点をXとするとき,点の座標を媒介変数を 用いて表せ (2) 原点Oからに下ろした垂線との交点をHとする.Hの座 標をαで表し,OH を αで表せ. (2) Hは上の点だから, (1) を用いて OH=(t+a, t+1, t+1)と表せる. ここで,OH だから, OH・ü=t+a+t+1+t+1=3t+α+2=0 H 3 2a-2 た 1 t=-Q+2 このとき,t+α= 3 t+1=q+1 よって、(24/2g+q+1) 2a-2 -a+1 3 3 また, OH2=- 9 (29-2)2 =14/01(1-1)+1/2 (a+1)+1/18( (-a+1)2 (デ = (a-1)2 (4) (3) のとき,∠POQ= となるαの値を求めよ. 1 33 2点間の距離の公式 2 (1) A (No, Yo, Z0) を通り, ベクトル u = (p, q, r) に平行な直 a≧1 だから,OH=6l4-1= (3) OH<1 だから 6 3 √(a−1) √A²=\A\ 3 (a-1)<1 : 1≦a<1+k tu √6 2 ◆仮定に a≧1 がある 1 H 線上の任意の点をXとすると OX = (No, yo, zo)+t(p,g,r) とせます. (2)日は上にあるので, (1) を利用すると, OH がαと tで表せます。 そのあと, OH・Z =0 を利用して, t をαで表します. (3) 球面Cと直線が異なる2点で交わるとき OH<半径 が成りたちます. (4)POQ=2をOP・OQ=0 と考えてしまっては,タイヘンです. 0 それは,PとQの座標がわからないので, OP, OQを成分で表せないから です。座標やベクトルの問題では、幾何の性質を上手に使えると負担が軽く なります。 解答 (1)OX=OA+tu=(a,1,1)+(t,t,t)=(t+a, t+1, t+1) :.X(t+α, t+1, t+1) (4)POQ= だから, OH= √2 -(4-1)=- /3 3 a=1+ 2 2 ポイント 中心 (a, b, c), 半径の球面の方程式は 演習問題 168 (x-a)+(y-b)2+(z-c)2=r2 いい 168において, (1)POQ=7 となるようなαの値を求めよ. (2) 線分 PQ の長さが最大になる点Aに対して, 球面C上の動点R をとり, 線分AR を考える 線分ARの長さを最小にする点Ro の座標を求めよ. 第8章

回答募集中 回答数: 0
数学 高校生

(2)(3)(4)がよくわからないので教えて欲しいです! あと(2)でn箇所で交わるのはなんでですか?例を書いて欲しいです!

基礎問 208 第7章 数 134 漸化式の応用 列 セレス 20 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で交わらないとき,これらの直線によって平面がαn 個 (3)(2)で考えたように,(n+1) 本目の直線はそれ以前に引いてある直 線とか所で交わり,その交点によって,(n+1) 本目の直線は,2つ の半直線と (n-1) 個の線分に分割されている (下図)。 209 ってい 2 12 (1) の部分に分けられるとする. ① ② ③ [ +1 いる (1) 1, 2, as を求めよ. (n+1) 本目の直線 (2)本の直線が引いてあり,あらたに(n+1)本目の直線を引 いたとき,もとのn本の直線と何か所で交わるか. 1本目 2本目3本目 (e) (3)(2)を利用して, an+1 を an で表せ. (4) α を求めよ. 精講 まず、設問の意味を正しくとらえないといけません.nが含まれて いるとわかりにくいので, nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. 30 (N) よって, (n+1)本目の直線によって, 平面の部分は (n+1) 個増える ことになる. ..an+1=an+n+1(n≧1) <階差数列 (123) 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります。 (3)が最大のテーマです。 「an+1 を an で表せ」 という要求のときに,41,42, α3 などから様子を探るのも1つの手ですが, それは137 以降 (数学的帰納法) に まかせることにします.ここでは,一般に考えるときにはどのように考えるか を学習します. an と αn+1 の違いは直線の本数が1本増えることです. (4) n≧2 のとき, an=a+(k+1)=2+2+3+…+n) n-1 (1+2+…+n) +1= 1 == 1/2 n ( n + 1) +1 = 1/1/1 (n² + (n²+n+2) これは, n=1のときも含む. 吟味を忘れずに 「 ポイント 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、 その変化を追う 解答 (a2) 第7章 (1) (a₁) (a3) ① ⑥ (2) ④ 27 ⑤ ③ 演習問題 134 (1) ④ ③ 右図のように円 01,02, … は互いに接し, かつ点Cで交わる半 直線に内接している. このとき, 次の問いに答えよ. 図より, a2=4 (1)円 01 の半径が5, CA1 の長さが12で 12 図より, α3=7 あるとき,円の半径 12 を求めよ. 図より, a1=2 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって, nか所で交わる. (2)番目の円の半径を1とすると き との関係式を求めよ. (3)を求めよ。 01 O2 A2 A1

回答募集中 回答数: 0
数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0
数学 高校生

(3)のシグマの式がなぜこうなるのかわかりません。お願いします

13 奇偶で形が異なる漸化式 次のように定められた数列がある. n n+1 α」=1, an+1=an+ 2 (1) 2= |, a3=1 a6=□, a= | (n=1, 3, 5, ...), an+1=an+ である. 2 (n=2, 4, 6, ...) (2) 439= I, so= である. (3) 初項から第40項までの和は である. 奇偶で形が異なる漸化式 (明大・農) の奇隅で形が異なる漸化式は,n=2k-1, n=2kとおいて, 奇数項 (a, ……どうしに成り立つ漸化式。つまり、ak+」をza-」で表す式を立てて解き、もとの漸化式に戻 てを求める. 解答量 1+1 2 (1)q=1より, a2=a+ =2, a=az+ =3, 2 6 5+1 a=a3+ 3+1 L=5.05=a+1/2=7. 2 =7, a6=as+ 2 =10, α7=46+ 2 =13 (2)n=2k-1のとき, (2k-1)+1 α(2k-1)+1=2k-1 + .. azk=azk-1+k 2 2k 2 ( n=2kのとき,a2k+1=a2k+ -=azk+k ①,②より, a2k+1=Q2k+k= (a2k-1+k)+k=a2k-1+2k n≧2のとき, azn-1=a1+(ag-a)+(α5-a3)++ ( an-1-a2n-3) =a+(a2k+1-a2k-1)=1+2k=1+2.- 2.1/2(n-1)n n-1 k=1 n-1 k=1 =n2-n+1(n=1のときもこれでよい) ① から, a2n=azn-1+n=n2+1 ③ ④でn=20として, α39=202-20+1=381, ao=202+1=401 (3) ③ ④ より 20 n=1 20 (azn-1+ a2n)=(2n²-n+2) n=1 =2・1・20-21-41-12 ・20・21+2・20=5570 13 演習題 ( 解答は p.77 ) ④ 奇数項についての漸化式を立て て奇数項を求める。 偶数項は奇 数項からすぐに分かるので, 偶数 項についての漸化式は立てる必 要はない. a=na k=1 次の漸化式によって定義される数列{az} (n=1, 2, ...) について, 次の問いに答えよ. 1 a1=4,a2n=/02n-1+n2, a2n+1=442m+4(n+1) (1) a2, 3, 4, 45 を求めよ. (2), 2n+1をnを用いて表せ. (3){4}の項で4の倍数でないものは,nの値が小さいものから4項並べると, 4, ao, a, a である。 (2) 奇数番目の項だけ に着目する. (3) 2+1 は漸化式か 68 (類 松山大薬) (1) (2) (i (in (i ■解 (1) 左 (2 I

回答募集中 回答数: 0
数学 高校生

この問題の(2)と(3)がよく分からないので教えて欲しいです!!

144 第6章 微分法と積分法 基礎問 90 共通接線 アイは一致するので, 3d²=2a+p, -20°=q- よって, カ=3a-2a, q= -20°+α² 145 5/5 3.0 2つの曲線 C: y=x, D:y=x2+pr+g がある. (1) C上の点P(a,d)における接線を求めよ (2) 曲線DはPを通り,DのPにおける接線はと一致するこ のとき,,g をαで表せ. => '+(3)(2)のとき,Dがx軸に接するようなαの値を求めよ. ばれます (2)2つの曲線 C,Dが共通の接線をもっているということです が,共通接線には次の2つの形があります。 精講 (I型) y=f(x) y=g(x) P a (Ⅱ型) 3y = f(x) y=g(x) Q 適です。 P 違いは、 接点が一致しているか,一致していないかで, この問題は接点がP で一致しているので(I型)になります. どちらの型も、接線をそれぞれ求めて傾きとy切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう. 解答は、この公式を知らないという前提で作ってあります. 解答 (1) y=xより,y'=3だから,P(a, α3) における接線は, y-a3-3a2(x-a) :.l:y=3ax-2a3.......ア C 0186 5 : y = (x + £ ²)² + q − 2² だから, 曲線 (3) D:y= 4 Dがx軸に接するとき,頂点のy座標は 0 D² =0 q- 4 ∴.4g-p20 よって, 4-2a3+α²)-(3-2)=0 4a²(−2a+1)-α(3a-2)2=0 a^{-8a+4-(9α²-12a+4)}= 0 a³(9a-4)=0 :.a=0, 459 注 α=0 が答の1つになること は,図をかけばx軸が共通接線 であることから予想がつきます. (2)はポイントを使うと次のようになります。 f(x)=x, g(x)=x+px+q とおくと f'(x)=3.2g'(x)=2x+p [a=a+pa+g 13a2=2a+p ポイント よって, x²+px+q=0 の (判別式) = 0 でもよい 展開しないで共通因数 でくくる YL p=3a2-2a q=-2a³+a² 10. 2つの曲線 y=f(x) と y=g(x) が点(t, f(t)) を 共有し,その点における接線が一致する f(t)=g(t) かつ f'(t)=g'(t) y-f(t) =f(t)(x-t) (2)PはD上にあるので,a' + pa+q=α ... ① また,y=x'+px+g より y'=2x+p だから, Pにおける接線は,y-d= (2a+p)(x-a) y=(2a+p)x+a³-2a²-pa y=(2a+p)x+q-a² ......①(£) 演習問題 90 第6章 関数 f(x)=x2+2とg(x)=-x+ar のグラフが点Pを共有 し、点Pにおける接線が一致するこのときαの値とPの座標を 求めよ.

回答募集中 回答数: 0