学年

教科

質問の種類

数学 高校生

高校数学微分です。(1)なぜ分母も分子も0でないと極限がないのですか?また、(2)は全然分かりません!解説お願いします!

18 重要 例題197 関数の極限値(2) 係数決定・微分係数利用 00000 (1) 等式 lim x2+ax+b =3を満たす定数a,bの値を求めよ。 基 次 x→1 x-1 (2) lim f(a-3h)-f(a) をf' (a) を用いて表せ。 h→0 h 指針 (1)x→1のとき, 分母 x-10であるから,極限値が 存在するためには, 分子 x2+ax+b→0でなければなら ? ない(数学Ⅲの内容)。 一般に /p.314 基本事項 1, 基本 195 (1) (3) k 0 (1)ならば f(x) x→C lim -=αかつlimg(x) = 0 なら limf(x)=0 * g(x) まず,分子→0 から αとの関係式を導く。 次に,極限値を計算して, それが=3となる条件から, a,bの値を求める。 が使えるように式を変形 f(a+h)-f(a) (2)微分係数の定義の式 f' (a) = lim- h→0 h する。 極限値存在せず 指 xc 必要条件 (1) lim(x-1)= 0 であるから lim(x2+ax+b)=0 x→1 x→1 解答 ゆえに 1+α+b=0 よって b=-α-1 x2+ax+b このとき lim LX100-10 x→1 x-1 2-01x0000) =lim x→1 (x-1)(x+α+1) x-1 解 必要条件。 ...... ① =lim x→1 x-1 x2+ax-a-1 注意 必要条件である b=-α-1 を代入して (極限値) =3が -=lim(x+α+1) 成り立つようなα, b の値 を求めているから x→1 =a+2 a+2=3から a=1 ①から b=-2 (2)→0のとき, -3h0 であるから lim h→0 f(a-3h)-f(a) f(a+(-3h))-f(a) =lim a=1.6=-2 は必要十分条件である。 lim h→0 =f'(a)(-3) =-3f'(a) -3h 別解 -3h=t とおくと, ん→0のときt→0であるから t-0 t=limf(a+t)-f(a) (与式)=lim f(a+t)-f(a) t-0 3 =-3f'(a) t (-3) h→0 f(a+□)-f(a) =f'(a) □は同じ式で, ん→0のときロー □ の部分を同じものにす M のような 形をしている。 →0の とき3h0 だからといっ て,与式)=f(a)として は誤り! C

解決済み 回答数: 1
数学 高校生

解説の(2)(3)で黒線が引いてあるところがわからないので教えて欲しいです!!

152 第6章 微分法と積分法 基礎問 153 ●時は 「時はケ 96 接線の本数 曲線 C:y=x-m 上の点をT(t, ピーt) とする. (1) 点Tにおける接線の方程式を求めよ. (2)点A(a, b) を通る接線が2本あるとき, a,bのみたす関係式 を求めよ。 ただし,a>0,b=α-a とする. (3)(2)のとき,2本の接線が直交するようなa, bの値を求めよ. 精講 (2)3次関数のグラフに引ける接線の本数は、接点の個数と一致 ます。だから, (1)の接線に A(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが、このときの 考え方は 95 注 で学習済みです。 (3) 未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数(84) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります。 解答 (1) f(x)=-x とおくと, f'(x)=3-1 よって, Tにおける接線は,小)× y-(t-t)=(3t2-1)(x-t) y=(3t2-1)x-2t3 86 (a=0 lg(0)g(a)=0 a=0 (a+b) (b-a+α)=0 ba³-a, a>0 745, a+b=0 (3)(2)のとき(*)より, t2(2t-3a)=0 Sack 参考 <α0 は極値をもつ ための条件 2本の接線の傾きはf'(0) (22) だから、直交する条件より 3a (0) ƒ (32)=-1. (-1)(a²-1)=-1 8 a²= 27 という a>0より,a= 2√6 _26 b=- 9 9 ポイント 3次関数のグラフに引ける接線の本数は であ 接点の個数と一致する 不 実は,3次関数のグラフに引ける接線の本数は以下のようになるこ とがわかっています. 記述式問題の検算用やマーク式問題で有効で す。 3次曲線Cの変曲点 (89)における接線をひと するとき, 斜線部分と変曲点からは1本引ける ・Cと上の点(変曲点を除く) からは2本引ける ・青アミ部分からは3本引ける K (2) (1)の接線は A (a, b) を通るので b=(3t2-1)a-2t3 2t3-3at2+a+b=0 ...... ( * ) y=x-x (*) が異なる2つの実数解をもつので 第6章 (極大値)×(極小値) = 0 であればよい. g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, T 演習問題 96 195注 A(a,b){ (t,t³-t) 曲線 y=x6xに点A(2, p) から接線を引くとき 次の問いに g'(t)=6t2-6at=6t(t-a) g(t)=0 を解くと, t=0, t=α だから 答えよ. (1) 曲線上の点T (t, -6t) における接線の方程式を求めよ. (2) で表せ (3)点Aから接線が3本引けるようなかの値の範囲を求めよ.

解決済み 回答数: 1
数学 高校生

解説を読んでもなかなか理解できず困っています。 3つの青い線を引いた箇所がなぜそういう式変形になるのか教えて頂きたいです!回答よろしくお願いします!

例題 72 微分係数の利用 (1) **** 微分係数を利用して,次の極限値を求めよ. 199 解答 (1) lim ex-1 (1) lim 110 x を用いてよ sinx-sina (2) lim (aは0でない定数) x³-a³ 11a log(x+1) (3) lim x 0 tanx 考え方 関数f(x)のx=q における微分係数f(a)は, f'(a)=lim f(ath)-f(a) 914 または,f(a)=limf(x)-f(a) x-a xa である.この定義をどのように活用するか考える. (1) lim e-1は、②において、a=0 の場合と考えられるが, x exの2xに着目すると, 分母のxが2x であれば, 合 e2x-1 x 0 x lim2. e2x-eº x0 2x (2) lim xa =lim x a =lim x → a -=2・1=2 sinx-sina x³-a³ sinx-sina (xa)(x²+ax+α²) x2+ax+a2 1 Ea²+a+a sin x-sin a x-a cosa cos a 3a² A-m log(x+1) (3) lim 110 tanx 414 =lim 10 110 log(x+1)-log(0+1) x-0 tan x-tan0 x-0 e2-1 e2-e° lim =lim -=1 x 0 2x 018 2x 3 となりのx=0における微分係数として求めることができる. Focus (2) lim sinx-sina -は,f(x)=sinx のxaにおける微分係数として考えることが できれば,極限値を求めることができそうである。 分母に着目すると, x-a=(x-a)(x+ax+a^) と因数分解できる. (3) 分子は, log(x+1), 分母は, tanx であるので, このままでは(1),(2)のように考えることができない. そこで、分母と分子を分けて、それぞれで考えてみる。 分子は, _log(x+1)-log ( 0+1) lim- 110 x-0 とみることができる.log(0+1)=0) 練習 分母は, lim- 110 tan x-tan0 x-0 とみることができる. (tan0 = 0 ) ** ここで, log(x+1) のときもtanxのときも, 分母がx-0であることに注目する. ② f'(a)= limf(x)- 819 f'(a)=lim fla+ X- (2か所のは同じもので,ん 72 微分係数を利用して、次の極限値を求めよ。 (1) lim e-1 x → 0 sin x π

解決済み 回答数: 1