学年

教科

質問の種類

数学 高校生

(2)の場合分けについて質問です。私は問題を解くときに(i)0<a<2(ii)2≦aのように解答と逆に=をつけて場合分けしたのですが間違いですか。≦は確か、<または=、と言う意味だったと思うので間違っていない気がしちゃってます、、、よろしくお願いします。🙇

46 基本例 85 2次関数の係数決定 [最大値・最小値] (1) 0000 (1) 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 を定めよ。また,このとき最小値を求めよ。 (2) 関数 y=x2-2ax+a2a (0≦x≦2) の最小値が11になるような正の定数 α の値を求めよ。 基本 80 82 重要86 指針 関数を基本形y=a(x-p)'+αに直し, グラフをもとに最大値や最小値を求め (1) (最大値) =4 (2) (最小値)=11 とおいた方程式を解く。 (2)では,軸x=a(a>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 5 ■区間の中央の値は 22 で あるから, 軸x=2は区 間 1≦x≦4で中央より 左にある。 解答 (1) y=-2x2+8x+k を変形すると y=-2(x-2)^+k+8 y k+8-5 よって, 1≦x≦4においては, 右の図から, x=2で最大値k+8 012 をとる。 ゆえに k+8=4 最小 最大値を4とおいて, よって k=-4 kの方程式を解く。 このとき, x=4で最小値-4をとる。 [1] y 軸 (2) y=x2-2ax+α2-2a を変形すると y=(x-a)²-2a [1] 0<a≦2 のとき, x=αで 最小値 -2αをとる。 11 a 2a=11 とすると α=- 2 0 2 これは0<a≦2を満たさない。 [2] 2 <αのとき,x=2で -2a 最小 x AX < 「αは正」に注意。 <0<a≦2のとき, 軸 x=αは区間の内。 →頂点x=αで最小。 の確認を忘れずに。 最小値 22-2α・2+α2-2a, つまりα-6a+4をとる。 α2-6a+4=11とすると a2-6a-7=0 2<αのとき, 軸x=aは区間の右外。 [2] YA a a²-6a+4 →区間の右端 x=2で最 最小 a (a+1) (a-7)=0 これを解くと a=-1,7 02 x 2 <a を満たすものは a=7 の確認を忘れずに。 以上から、 求めるαの値は α=7 -2a 習 (1)2次関数 y=x-x+k+1の-1≦x≦1における最大値が6であるとき、定数 35 kの値を求めよ。 (2) 関数y=-x2+2ax-a-2a-1 (-1≦x≦0) の最大値が0になるような定数 a の値を求めよ。 p.159 EX61

未解決 回答数: 1
数学 高校生

(3)(ii)で、黄色マーカーのところで、 ・3s^2-2s-3はどこからきたのか ・9s^2+14s+1で割るとわかるのはなぜか がわかりません。教えてください。

【5】 a b を実数とする。xについての関数f(x)。g(x)を次のように定める. f(x)=xx-x+α.g(x)=-x+bx+4 x=f(x)は極小値を, g(x)は極大値をもち,これらの値は一致する. 次の問いに 答えよ. (1) tの値を求めよ. (2) a. bの値を求めよ. (3) 関数h(x) を次のように定める。 「f(x) (x<t のとき) h(x)= g(x)(xtのとき) (i) h(x) の最大値を求めよ. () 曲線y=h(x) をCとし, Cと異なる2点で接する直線を1とする.Cと1の2 である. (3)i) (1)のf(x)の増減表より, h(x)はxで増加し、 x < 1 で減 少する. また, 曲線y=g(x)は軸が直線x=1で上に凸の放物線であるか ら.h(x)はx≧1で減少する. よって、 (x)の増減は下表のようになる. ... 1 h(x) 15 増減表よりh(x)はx=132 のとき最大値 つの接点のx座標を求めよ. (40点) 考え方 (1) f'(x) を計算し、f(x)の増減を調べましょう. (2)(1)をもとに,f(x)の極小値を求めましょう。また,g(x)は2次関数ですから,平方完成をしてg(x)の極大値を 求めましょう。g(x) の極大値は微分法を用いて求めることもできます. (3)i) (1) (2) をもとにh(x) の増減を調べましょう. (曲線y=f(x)(x<t) 上の点 (s, f(s)) における接線が曲線y=g(x) (x≧t)に接する条件を考えましょう。曲線 y=f(x) (x<t) 上の点 (s, f(s)) における接線が,y=g(x)(x≧t)上の点(u, g(u)) における接線と一致すること を利用する方法もあります。 解答】 f(x)=xx-x+α より f'(x) = 3x²-2x-1=(3x+1)(x-1) なるので, f(x) の増減は下表のようになる. 1 x .... .... 1 ... f'(x) + 0 0 + f(x) 7 って, f(x) はx=1で極小値をもつので る. t=1 より, f(x) の極小値は f(1)=1'-1'-1+a=a-1 3. また (x)=(x-2/28)2 +12+4 (答) (1/3)=(-1)-(1)-(3)-(-1)+6 -1-3+9+162-167 をとる. ( Cは下図のようになる。 y=f(x) (8, f(s)) y = g(x) u (uif(w) ...... (答) 三択問題 6.2のとき。 a-1と +4の値はともに5である. 4 xにつ +2 (x) N for = f(s)=35-28-1 この接線は(vif(a))も通る。 y=(3s2-2s-1)(x-s) + s-s-s+ 6 図より Cとはx=s, u(s<1<u) で接するとしてよい.s<1より, I の方程式は y=f(s)(x-s)+f(s) (8,ρ(よ))における接線の方程式 より(8,t(s)の傾き Cのx <1の部分はy=f(x) で 表されるので,y=f(x)のグラ フの接線を求めている すなわち y=(3s2-2s-1)x - 2s + s' + 6 である. よって, C と1がx=u (u> 1) で接する条件は,x>1のとき h(x)=g(x) であることに注意すると (3s2-2s-1)x-2s' + s' + 6 = x + 2x + 4 g(x) x2+ (3s2-2s-3)x - 2s' + s + 2 = 0 が重解をもつことである. このとき ← ・接線と(2)の接点は いてある。 ………….. ① g()と(352-25-32-4(-2s'+s°+2)=0←①の判別式をDとするとD-O「①が重解をもつ①の判 「別式が0である」ことと、 ① が 重解をもつとき、その解は 3s22s-3 u = - 2 すなわち 金額をもつときax+bx+c=0の2解をdBdXB (35-25-3) = b 2-1 x+B= a+d=- であることを用いた、 (x)はx= 11/10で極大値+4をもつよって 曲線y=g(x) は上に凸の放物線 であるから, g(x) は頂点におい 極大となる. すなわち 解説 1° (別解) =1 b2 +4=a-1 4 a=6,b=2 -②数 17- ......(答) 201= ②数 18-

未解決 回答数: 0