学年

教科

質問の種類

数学 高校生

127.1 最後に解答では0<θ<π/2より、と書いていますが 私は0<θ<πと書いてしまいました。 これは減点対象ですか?? またなぜ0<θ<π/2と考えることができるのでしょうか?? 私は2直線があったときに同じ大きさのなす角が2つずつできるので2(α+β)=360°で... 続きを読む

基本 例題 147 2直線のなす角 0000 (1) 2直線√/3x-2y+2=0, 3√3x+y-1=0のなす鋭角0 を求めよ。 (2) 直線y=2x-1との角をなす直線の傾きを求めよ。 esa. 指針> 解答 VERT (1) 2直線の方程式を変形すると CASO COSY PRES -x+1, y=-3√3x+1 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると π m=tane (0≤0<₁ 0+ 2 (1) 2直線とx軸の正の向きとのなす角を α, β とすると,2直線 のなす鋭角は,α <βなら β-α または π-(β-α) で表される。 ←図から判断。 この問題では, tana, tan βの値から具体的な角が得られないので, tan (B-α) の計算に 加法定理を利用する。 公式> 0mag y= √√3 2 図のように, 2直線とx軸の正の向 きとのなす角を,それぞれα, βと すると, 求める鋭角0は0=β-α tanβ=-3√3で, 103 √3 2 tan B-tan a tan0=tan(β-α)= 1+tan Btana tan α= 0<a<であるから 0= 7 3 (2)直線y=2x-1とx軸の正の向き とのなす角をaとすると tang=2 tanattan tan(a+4)= π 4 1 千 tan a tan 4 2-(-3√3-√3)÷{1+(-3√3). √3)=√3 2 もい 2±1 1+2・1 であるから,求める直線の傾きは =-3√3x+1 (複号同順) y= √3 2 sin la co Sa -x+1 -3, -1- 0 Ay 1 3 0 y=2x 4/ B 元 4 10 x ly=2x-1 p.227 基本事項 ② 3293 94 YA n m n 0 +0 2 y=mx+n 単に2直線のなす角を求める だけであれば, p.227 基本事 項②の公式利用が早い。 傾きが m, m2の2直線のな す鋭角を0とすると tan 0= m-m2 1+m1m2 [別解] 2直線は垂直でないから tan 0 -- (-3√3) x 1+√3(-3√3) 2 _7√√3+1 = √3 ÷ 2 2 08から 0= 2直線のなす角は,それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線y=2x-1 を平行 移動した直線y=2x をも とにした図をかくと, 見通 しがよくなる。 231 42 4章 24 加法定理

未解決 回答数: 1
数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0